データベース

Classification of graphs obtained from maximal two-distance sets


A Euclidean two-distance set X ⊂ R^d is said to be maximal, if there does not exist x ∈ R^d such that X ∪{x} is a two-distance set, and x is not in X. For d<7, we classify maximal two-distance sets with |X|>d+2. The following is the database having the classification of graphs obtained form them. 


Maximal two-distance sets
3 dimension (Adjacency matrix)  (Graphs for Magma user)
4 dimension (Adjacency matrix)  (Graphs for Magma user) 
5 dimension (Adjacency matrix)  (Graphs for Magma user) 
6 dimension (Adjacency matrix)  (Graphs for Magma user)
Maximal spherical two-distance sets
3 dimension (Adjacency matrix)  (Graphs for Magma user)
4 dimension (Adjacency matrix)  (Graphs for Magma user) 
5 dimension (Adjacency matrix)  (Graphs for Magma user) 
6 dimension (Adjacency matrix)  (Graphs for Magma user)
Maximal non-spherical two-distance sets
3 dimension (Adjacency matrix)  (Graphs for Magma user)
4 dimension (Adjacency matrix)  (Graphs for Magma user) 
5 dimension (Adjacency matrix)  (Graphs for Magma user) 
6 dimension (Adjacency matrix)  (Graphs for Magma user)

Classfication of the maximum spherical two-distance sets in S^6 (28 points, 467 graphs)

No.1--No.100 (Adjacency Matrix) (Graphs for Magma user) 
No.101--No.200 (Adjacency Matrix) (Graphs for Magma user) 
No.201--No.300 (Adjacency Matrix) (Graphs for Magma user) 
No.301--No.400 (Adjacency Matrix) (Graphs for Magma user) 
No.401--No.467 (Adjacency Matrix) (Graphs for Magma user)