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(V4) EBD v e VIZX LT, Y(v,2)1 € (EndV)[[2]] »*2lim,50Y(v,2)1 = v
(V5) myne Zizxf L T,

m?—m

[L(m), L(n)] = (m — n)L(m + n) + —5—dm+n.oc

2%, ZIZT, Y(w,2)=3 g L(n)z" % VECTHS,

ned
(Ve) £ED v e VT LT, Y(L(—1)v,2) = £Y(v,2)
(V7) L(0)|v, =nldy,

(V8) Z,-homogeneous %2 u,v € VIZH LT, KD Jacobi AEL Y iLD,
515 (?) Y (u, 2)Y (v, 20) — (~1)2518 (.22__2:_‘) Y(v,2)Y(u, )
) _
=276 (@) Y(Y (v, 20)v, 22)
22

Vi =0 DL EITIEV = Vs it VOA Th 3,

SVOA V ixBRFr £ M7=, : Z,-homogeneous 2u,v € VIZH LT, &
AEEHNBHH-T,

(z — w)VY (4, 2)Y (v,0) = (-1)¥(z — w)"Y (v, w)Y (1, 2)

MR Y AL,

WKIZ (binary) code VOA %l ¥ %, kISEEH LTS, (V=V0W,Y,1,w)
#SVOA LT3, VOKADTF U INRMF =V 2EX, QL i€ F(v;eV)
R LT, ERIFARY(OL v, 2) = ®L, Y (v;,2) #EHE L. F2EICHRBIZILR
¥ 5, codeword a = (a1,-+- ,ax) €EZE WX LT, V,=V;®---0 Vs ETHIT,
F=@ueuVe Thd, VOBRFTREND, ueV,ve pitxLT,

(z = 2)VY(u,2)Y(v,2) = (-1)P(z = 2)VY (v, 2)Y (u,2)

&5,
D C Zk % (BW)code £ T35, LD (=1)*f EiHT7DIZ, DORMICLD
(£1) COPLER LMD = {e°la € D} 2EX D, “DL &, fock EM%

VD = ®a€D(Va ® ea)
EEBL, BRIEARZve VL IZHLT
Yv®e*2)=Y(v,z2)®e”
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LEBTH L, BRFTATRARY IO ERRHD, HEILL = (95,1)0€° € Vi)
THY.

¢ = (®1i1) @ w ® (®fais11) ® €
LB L, FIRETETHY, b=+ +eF XV D Virasoro TIZ/e 5, 15,
KRB Y AL,

BE 3. [M1] (1) D 2B code D& &, (Vp,Y,1,0) 1 VOA TH 3,
(2) (Vas,Y,1,0) iX SVOA TH 5,

3 YA RFMBEOHK
Z 0T, [BDM] DFEERETIRL T, code VOA DY 1 X MNBEERIEL TS,
DIV A A M IBROERE HF X5,

B#E 2. (V\Y,1,w)IXSVOA L L, gidfifkknVOHAERBET S, ~7 b
ZM W LBREER

YW(,2):V = (EndW)[z%,z7%]]
v = Y(v,2)= Z v,z2"""! (v, € EndW)
ngiZ

BREWGITHE, (W, YW)iLg-YA X V-IIBETHB LWV,
(W1) W = @yecWi £7225. EEL, Wy = {w e W|LY(0)w = dw}. YW (w,z2) =

Ynez LY (n)z"2, ChH B,
(W2) EED A e CIZH LT, Wy <00 5/ E v n € ZZIZH L W)y, =0

k23,
(W3) EEDueViweWIZHLT, +89K&EM2n Cu,w=0%,23,
(W4) YW(1,2) = Idw

(Ws)ueVr={veVjgn=e T v}0tE, Y¥(u,z2)= Zneinunz"‘" &
25,

(W6) Z,-homogeneous’2u € V' v e VIZH LT, KDY A R b Jacobi AL
3L,

z'8 (zl;fzz) Yw(u, ZI)YW(U,ZQ)
_(—1)“7.6'15 (22—;2021) Yw(v,22)YW(u, z)

_ — Nk
= 2516 (" "’) (" z°) YW (Y (4, 20)v, z2).
Z2 22
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YWz oW T HBRBTTHRIENRR Y 3L, : Zy-homogeneous 22 u,v € V {23 L
T, HHEEEN MBHH-T,

(z =2NY%¥(u,2)Y¥(v,2) = (—1)®(z = 2)Y¥ (v, 2)Y¥ (1, 2)

MRV Lo,

(V,Y,1,w)iXSVOA &L, kiTEBH LTS, g= (12 k) £T D, 0 = LO
RV o2 BBRENC 25, (W, YW)Ed-VA X b V-ME(=0,1) & T35, W
EiZ ot 15-0 A R b V- MRS (W, Y,) ZEBL TV, 2T, o BT VY
WVRDE LS TET o XERT AABREE (0,1,-+- ,1) TH Y, GIIEBRORIMRIZL
D g OBHSNIACAMTH D, u € GUW IZH LTV OFTw,j=1,- ,k,
%

( '17_-111) Qud (®J+11) ® eJa.ln,

E4B, TITT, k= (0-10F9) THB, TOLE, {uiu€ VsUW,j=1, k)
3V BERT 3. ETERTEICHLTY, 2ERT D,

& 3. (c.f. [BDM]) Ax(z) € (End V)[[23,2-%]) %
Ax(z) = exp (Z a_,-z"fL(j)) k- L0 (-1)L)
i€Zs
ETD, L, a;,7 €24, 13
ex Zaa:"“ .3;:1(1.*.;;)*'__].'_
P i k k
JE€EZ4
TEBEN, kO 2 )0y e vy, lmHLT
k_[‘(o)u = k'%“u , z(%"l)b(olu = le_T:mu
TERLBMICHERT 5, ZOAL() ZHE>T, ue VIEHLTYY(u,2) %
P¥(u,2) = Y (Br(2)u, %)
EEZEL, W ITXHLTY, %

Y,(ul,2) = V(u, e z) = lim  Y(u,z)

z#-u;,"'“:

DEICEET D, =L, e =e% T3,

—13—



FIZIX, Virasoro T & IZ2WT, Y,(w,z) = EnezL (R)z 2% 5L

Liw =2 (20, L0 = KO _ E L

a&orwazambmao:onuowr&#&bﬁo:kﬁbmé,

A1 veV,j=1,--- ,kiHLT,

[Lo(=1), %0, 2)] = £¥,(08,2) = K (L-1)w¥,2)
MEE Y LD,

188 2. Zy-homogeneous 2 u,v € V £ 4,5 = 1,---  kIZH LT, Y (u',2) &
Y,(v, z,) ERFTATR, M, &5 EBIKN 25h-T

(21 — 2)VY(w, )Yy (v, 22) = (=1)%(21 — )Y (v, 22) Yy (w', 1) (1)
A/ RTACH

SR (Y, (4, z)lu € VoU Viyi = 1,-+- k) IRED 2 T BIFITIRA Z,- kK
HEEMIIRDZ L ERLTVS, (EndW)[[z3#, z7%]) IKBWT o0 & 5 2B
{72 Z-REAF EZEM D 5 bIEK2ZEM%E (Za-twisted) local system &9,
[L] A = As @ A; £ EOZEMEELe local system &35, a(z) € AICH LT,
pa(z) = limz!;:_u;:z* a(z) ETHIE, pikp* =1 THD ADHCRBIZRS, A
LERARERAR Y, EROL I ICEET S,

& 4. pa(z) = e Fa(z) T3 Zy-homogeneous 72 a(z),b(z) € A V25t LT,

D (@(2)ab(2)) 55" = Res, (‘)"‘x (2)

neZ

L&Y n-EERH a(2).b(z),n € Z, 2 EH TS, ZZ T,

X=z 5( )a(z,)b(z) —(=1)"z ( :‘) b(z)a(z).
THD, LD (2) % Ya(a(2),20)b(z) £ K<,
IDEE, RBEY LD,

BHE 4. [L] (A,Ya,[(20) = Idw,D = &) RTRREREKI2 Y, Yw(a(z) 20) =
a(zo) EFTHIE, (W,Yw) iXp-VA4 R b AMBEIZ2 3,

—7%. SVOA OMEE & local system ICBILTHRD L 52 Z &R Y LD,

— 14—



BES. [[J]VIZSVOATHBEL, i TOV OACRBETS, ZDL
E AVARINV-MBEEEXBZ L L, VIrbdHD Zr-twisted local system ~D
BRRBARMBERREZE X5 = LiZRETH 5,

COEBREBATHEDIZ, ROLIRBREERT 5.
EE 5. g{ﬁf:Vu;—)A&

f: Vzg - A
B @ - @uk®e™ = (u)-y -~ (ufl))up = Yo(ul,2)-1 - Yo(uil) 2)a Yo(ug, 2)

TERT D, L&, f(u') =Y, (v, z) Ths,
IDLE, WHAERY I,
il 3. fHABREOBFRE THS,

IO ficky, #mroue%guﬂbr Y (v,2) = f(v) BEBEh, EOE
BNLRMBEY LD,

R 6. (W,YW) B .YAXV-MBEDLE, W,Y,) ol 'g-Y AR} Vp-
IMBETHB. SbiT, (W, YY) BEMTHIIZ, (W,Y,) t&%‘]’(‘ﬁaéo

B SVOA M = L(3,0)0 L(3, 1) kLT, LoF@mEEATs, Mit. M
REEMMBEE LTH b, (L, L) #BEM o-Y A & MIBEL LTED, LtHoT,
KRB Y 3L,

BE 7. (M,Y,) 3B o} 1g-V A R I My -MBEZRD | (L(}, 35), V) RBEM o1 g-
y4sz4MﬁR&&

Ele, DR gFERBcode D& X, code VOA Mp C My IR LTo kg%
Mp DEERM L RT, Y, % Mp iIZHIRTHhiX, RBELY LD,

EHE 8. (L(1,0),Y,) & (L(L, 1), Y,) BEM o ~'g- A A b Mp-BIBEIZA2 Y | (L(3, %), Y))
1XBEH okg-V A 2 b Mp-MBEIZA2 B,

X P

(BDM] K.Barron, C.Dong and G.Mason, Twisted sectors for tensor product VOAs
associated to permutaion groups, math. QA /9803118.

[B] R.E.Borcherds, Vertex algebras, Kac-Moody algebras and the Monster, Proc.
Natl. Acad. Sci. USA 83 (1986), 3068-3071.



[DGH] C.Dong, R.J.Griess Jr. and G.Hoeha, Framed vertex operator algebras,
codes and the moonshine module, Comm. Math. Phys. 193 (1998), 407-443.

[DLM] C.Dong, H.Li and G.Mason, Modular invariance of trace functions in orb-
ifold theory, q-alg/9703016.

[DMZ] C.Dong, G.Mason and Y.Zhu, Discrete series of the Virasoro algebra and
the moonshine module, Proc. Symp. Pure. Math. American Math. Soc. 56 no.2
(1994), 295-316.

[FLM] L.B.Frenkel, J.Lepowsky and A.Meurman, Vertex Operator Algebras and
the Monster, Pure and Applied Math, Vol.134, Academic Press, 1988.

[L] H.Li, Local systems of twisted vertex operators, vertex superalgebras and
twisted modules, Contemporary Math. 193 (1996), 203-236.

[M1] M.Miyamoto, Binary codes and vertex operator (super)algebras, J. Algebra
181 (1996), 207-222.

[M2] M.Miyamoto, Representations of code vertex operator algebras, J. Algebra
201 (1998), 115-150.

[Z] Y.Zhu, Modular invariance of characters of vertex opretor algebras, J. Amer.
Math. Soc. 9 (1996), 237-302.



Fusion rules for the vertex operator algebra V;'
for a rank one even lattice L

ZH Flz
KIRAERFBEETRR

e-mail: sm3002at8ces.aanc.osaka-u.ac.jp

1 F

EEEBET LICHRTIHESERARRK V, 13, L © —l-isometry ZHIEL THS
hai¥k 2 DACRAYNERZRFD. TOACFRMERIC LS V, OBEESREE VI,V
DEIARERARNREE 2o TS, XB T, BLEZ vH-MBEDOMO fusion rule 2522
KREBLEDT, TOIEIZDWTHRET 3.

Vi iZB89 3 fusion rule D®REITIE, [Al] TRESI O Vi CHS TRAFERRRKE
LTEEh288RY > HAERFRRK M) O fusion rule XL BREIZREZL
T3,

1.1 %6

OB TIREREAFENRE (KUTF, VOA) (V,Y,1,w) IZXL , V-INBEDMO intertwining
{ERIR, B fusion rule DER, RUMET 3BT DONTIRRS (BEHIZDNWTI [FLM],
[FHL] 2 8). VOA KU, T (twisted) MEEDRZE DV TIZ, [FLM], [FHL], [DLM]
REZBRLTTEWN,

EH 1.1V & VOA, (M\Yyy:) (i = 1,2,3) % V-IBET 2. VKBTS (,M,)
B intertwining AR & IIBLEH

Y:M' - (Hom(M? M3){z},

v = Y(v,2)= Y. vu2" (v, € Hom(M?, M?))
neC

TeeVive M Rl ue M? LML RORBEHLTHDOTH 5:
(V) BERELE ke CIZHL n N+ REREELSHE, vuu=0&725.
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(2) (Jacobi IE%X)
P (zl -22) Yy (a,21)V(v, z2) — 25 6( —y ) (v, 22)Y302(a, 21)
=25 (" = ) V(Yir (a, 20)v, 22). (L1)
(3) (E(-1)-53%)

2 V(w2) = H(E(-1)v,2) (12)
CIT, Yan(w,z) =T,z L(n)z""2 TH 5.

£TO ( ,‘"° ) Bo mtertwnmng ERRMS R BT ML EM%E IV( J w1 ) &
B FORT M IVEH .rv( M ) DRTTEMET BED fusion rule &0, N,
EBL.

V% VOAM%EV-MBLTS. ZOK M IZ, L(0) DFERICE T, M = ®,ccM(N)
LEAAEMARENTVS. 22T, M(\) R L(0) BT 2EH M A OBREZMTH 3.
D M ORRDN M = @,ccM(N) BEL V-MBOMEEHES, acV iICHTHHE
RYERRE Yy(a,2) 12,

u' € M', v e M IZHRL, (Yi(a,2)u,v) = (', Yy (XMW (-272)t0g, 27 1)y)

TERENS. 2o V-m#E (M',Y;) 1R M O REEME LI8Ih 3 ([FHL| XU [HL) &
fR).
fusion rule [IROXMHEZFOIMN MO TS ((FHL)], [HL] &8).

HE 1.2 M (i=1,2,3) £ V-MBEET 5. CO, BRRER

Bt ) 2 0o () B B ) Sy )
NHEETS.
ROFEETDRDFIL, Vi IZBT 3 fusion rule ZRET DR, RELDIHETH 5.

#® 1.3 ([DL] Proposition 11.9) V & VOA &L, M' & M? JBE# V-IBET M3 13 (
BRI RSN ) V-MBEET 5. BL Y 48 (M, ) BO 0 Tizl» intertwining fF

M2

ARESE, EED 0 TAWIT ue MY, ve M2 ITHL T, Y(u,2)v 120 TRAZW.

R14VEEM (i=1,2,3) 2HE 1.3 0bDEL, U £RL Virasoro TEED V @
BoOTARERRRE, N &2 M (i=1,2) O U-BoMELT3. ZORK, HES5#

IV( I ) 4 IU( Nl \2 ) yHy'N'QN’
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BEHTHS. HICFSR,
dimly( ¢, ) <dimly( M )
MERDALD.

VM (i=1,23), URUFN (i=1,2) 2% 14 DbDET 3. & M 12 M = @it I
DRRIZ, U-BAMBOEMICABL TWBEERET 3. ZO, FR
Iy( et ) = @ictlu( "y )
/5 -oTHR 14 &0, RER
dimIy( . ) < %dim[u( pw ) (1.3)

ARV ILD.

1.2 VOA Vi & EDBELMEF

LEREE1OBBTEL, () 2#T0H#BLEEME ZRBRHHAETS. = CeozL
EBE, (,-) 2 H O C-BREBERICHIETS. Ch = exebcei Z2HO BRETD. £
7 6 DEBARE M IZHL, C[M] = DrenCer &<

b =b®C[t,t~!]| @ CK %3THRBIE

[X ® ™, X' ® t"] = mbusno (X, X') K, [K,b] =0 (X, X' € b,m,n € Z)

TEBINSD Lie RKETS. ZOK, i =h 9 Clt| @ CK i § OTREHRET, BE
Clol 12 b DIERZ, p(X @ t*)ex = bno(X, Nex, p(K)es = ex (A, X € b, n € N) &%
THIEICEST -MBERD. FSHC §h OHEHMEE M ITHL, C[M] i3 Clh] @ §-
HAMBED. T OB, Vi, 25 §-mi

Vu=U(h)® .+ C[M]2S(h®t'Clt™"]) @ C[M] (#F),

vh')

E¥2. TTTU() I} h OBBARRKEET. X@t" (X €hneZ) DV LOfE
A% X(n) & FE, BROER : OBRNMRKEL T X(2) = T,z X(n)z"! &EHL<.
AEHITHL ey ILMHITATHAERARZ

Y°(ex, z) = exp (i &;l)z ) ( Z ( ) ‘") exz*® (1.4)

n=1 n=1
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LEBEND, CTTHAD ey 13 ey € Clh) ® Cp) TCOEREERL, 20 R v €
S(het-ICt ")) @e, IKML 2Oy =040 TREEIND V) LOERRTHS. —HD
Jty= Xl(—nl) .. -X,,.(—n,,,) e\ € Vb (X, eh,n; € Z>o) IR A EAERFER

Vo(v,2) = 28™~NX(2) .- 8"~V X, (2)V°(exr,2) 3 (1.5)

TEHIND, T2T o™ = (4)(d/d2)" T, EXRIEF 22 1 X(n) (X € ,n < 0) RN
ex ¢ X(n) (X € b,n 2 0) R 2O OBEMIC< 2RICHUEHR 5BEEZRT. J° 2 1
LIZBREBICHIRT 5. a MV, OFTOKRICIL, Y(a,z) = )°(a,2) £ B &IZT 5.

L=Za LBE (a,a) =2k (k€ Zs) £T5. EL L° %2 L OBMEFETS. h
ZhOERERTREEL, 1 =1Qe¢), w = (1/2)h(-1)2¢y &E<. DB, (V,,Y,1,w)
IXHHE VOA £73 D, A€ L° 1ML, (Vays,Y) REEQR V,-MBER S, £, M(1) =
Shet'Clt ) ®e C V, EEL &, (M(1),Y,1,w) I2BAIE V, DS VOA iz
TWa. & X ehicHl, MQ,A) = U(h) Oyt Cer LB &, (M(1,2),Y) BB
MQ)-mit&2 s,

0% Xiehn€eZyy A€ hiTHL

O(X1(—m)Xz(—n2) - - Xe(—ne) ® €3) = (—1)* Xy (—n1) Xa(—12) - - - Xe(—ne) @ €_x

TEHIND V, ORBANERETBE, 0 12 VOA V,, M(1) DHERRZSXTH
2. JITVy @ O-FEHIEN W AL, 01l 5 L1-EHEEME Wt &&ET
&Y 5. o, (VHY,1,w) BT (M(1)4,Y,Lw) 1 VOA &ix3. TBIZ M(1)%,
M(1,)) (A # 0) 1ZBE® MQL)*-MBEE 2> T3 ([DN1] ). V-mEICEL T,
Vi Vi1 Viajzesr (1 < 7 < k= 1) DBEMMBE &2 5T 3 ((DN2]) BR).

RIC §-twisted V,-IBEDHKIC D WTHREAT 3. h-1] = h@t/2Ct, ¢t~ | @ CK % X#
Ba6%

[X ® ™, X' ® "] = mbmsno (X, X') K, [K,§[-1]] = 0 (X, X' € bh,m,n € 1/2+ Z)

TEHEETN TS Lie fREEL, j[-1]* = @¢/2C[t]@ CK ZZDFRBH KL T 5.
ZOM, C 1 j[-1* DEA%E p(XQt")1=0,p(K)1=1(X €h,n€l/2+N) TEH
THIEIEST, h[-1)*-mB &R o T WS, M(1)(0) 2R h[—1)*-mi¢

M(1)(6) = U(b[-1]) ®yg_ys) €= S (h@7ICIE]) (D).
ETB. X@t" (X ehnell2+Z) O M(1)(0) LOEAZE X(n) LBE, X(2) =
Trej24z X(n) 271 ET B, OB A € L° ITHL, ey 1B B twisted TAERARIZ

y’(e;,z):Z’“-*’z‘Qzﬁlexp( 3 —'\(;n)z") exp (- 3 @z‘") (1.6)

nel/2+N ne1/2+N
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TEBEINS. v= Xi(—ny) -+ Xe(—ng)es € Vio (X.' €Eh,n; €Z) LT,
W(v,z) = 30" VX (2)--- 8"V X (2) VP (va, 2) ¢ (1.7)

ERE, Ve LKERBICERT S, SITERERF 3+ & X(n) (X €h,n<0) 2 X(n)
(X €b,n>0) HRICRBLSITHUNEA BBEEET. STK ¢ € Q ZHAMNMK
RN

Y cnz™y" = —log

mn>0
TREEL, A; = T, uzo Cmuh(m)h(n)z=" L. TOR—BROTT u € Vi IZFHIT S
twisted TRA{EARI

(<1+z)%+<1+y)%)
2

V(u,z) = Woet u,z2) (1.8)

TEBRINSB. ZOB a € M(1) OB Y(a,z) = Y(a,z) LB EICTHE, M
(M(1)(8),Y?) IZBE72 O-twisted M(1)-INBEE T2 5.

Ty ET; % o MTNEN 1, -1 EEAT 28K CIL-MBEEL, V] = M(1)(6) ¢ T:
EBE<. ue M(L,B8) (B € L) ILABTS VI LD twisted HEEMKR Y (4,2) =
V(u,2) ey TEHSNS. Y OFHE V, LICERICHEET 3. 0, (VF,Y?)
(1 =1,2) iZBERL O-twisted V,-MBEE 12 5.

61k M(1)(6) L

0(Xi(~n1) - Xin(—1m)1) = (=1)"Xi(-71) - - - Xen(—11m)1 (X; € B, n; €1/2+N)

EERLTWS., TOEMICKT 3 M(1)(0) ® +1-BHEZEM%E M1)(0)* &L, V™=
MQ1)(0)* QT LE<L. ZO MQ1)(0)* BRU VI (i =1,2) REhEHh M)+ &V}
DOB#mMBE L7125 ([DN1), [DN2] ).

[DN1] IZ3WT M)+ IZBERIMEER, [DN2] iICHWT V;} OBERMBS RO L 3IE
hEngFzhTws,

£ 1.5 (1) (]DN1))
{M(1)%, M(1)(6)*, M(1,A)(= M(1,-A)) | €y - {0} } (1.9)

IR £ TOBE#2 M(1)*-MBZEX 5.
(2) ([pN2))

{Vl:,k) V:;z.;.[,’ V[,Thiy v:'a/2k+l; |’ = 1’2) 1 S r S k- 1} (110)
AIERERETORERE V- 51 5.

VE, VEars & Veapusr % JF twisted BB, V* (i = 1,2) % twisted BUMBELIF
RIERTD. UTFreZicHl, A, =raf2k EEL.
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2 Bi¥y Vi-INBoOREMEEE M(1)T- BB
VOA DRI OREMBL, BRTSH 5. V7 IZML TR, ROMENS 3.

G 2.1 (i) k ABEA ST, STOM v -met w RESXH, T4bS V- mits
LTW2W THA.
(ii) k MBFBA S, V- MBEELT

(Vat/zu,)' = V72+L’(VLT i = VP *, (VLT 1) o VLn *

o,

TEOMOBEHMBIIBACTRHTH 5.

BESIZIZ, Zhu O A(V)-BH (2] BE) 2H0BK, RDARMTENE BHONBOTE
BT 5. BL <i2 [A2] #BRLTFA L.

R, BB VH-mBEOBER) M(1)+-MBANOEAZFHIONTERRS. §, BTV Ae)h
KL, M(1,A) @ M(1,~A) DEBSZRM (M(L)* ® (ex Le-)) @ (M(1)- ® (e Fey)) &
FA5. ThEN 0 OEAINTS +1 BEEMTS 5. M(1)* © M(L,A) & M(1,-))
~OERIL 6 DIEA EPIRRDOT, BAZEM (M(1)*®(exte-r))®(M(1)~® (exFe-y))
B MQA)-BIMBETHS. ERICILROFHEIEDILD.

Hil 2.2 BTV A€hIZHL, (M(Q)*®(exte-r))®(M(1)~®(exFe-y)) i M(1, )
I MQL)H-MBEL TRRTH S,

BERA. B o) &, u e M(1)*, v e M(1)” IZXHL T,
$r: (M(1)" @ (ex+e-n)) @ (M(1)" @ (ea—e-2)) = M(1,A) (21)
u®(exte_n)+v®(ex—eon) » (u+v)®en

TEBETDE, N AREREEX BT ENDDS. M(1)*@(er—e_)OM(1)"®(ere-)
Il THRER. 0
ZOFHEERNWT, B VI-mEHE MQ)H-IBELL THMTH B Eitbh 3;

6ok 2.3 BELH V- ROL SIC, B M) -MBOEMICARENS:

VE = MQO)Fe é M(1,ma), (2.2)
m=1
Viir & @ M(LA +ma) (1<r<k-1), (2.3)
mEZ
Vi, & éM(l,a/2+ma), (2-9)
m=0
ViE = M1)(0)* (i=1,2). (2.5)

iz, B M(1)*-IBOEY Vi MR TORYERH L | TH 5.



HEBR.
R 1.5 (1) &0 pe L° BFTRITNE, M(1, p) 3SR M1)*-MBROT, Vi.
(1<r<k-1)1 MQ)*-MBEELT

VA.-+L = @ M(l,/\,-+ma)
meZ
ERMNRENDZ EMbh 5.
Ele,i=121CMLT, 4, 2 T. 0REET I &, B

$i: MQ)O) - VF:um u®t;

i 0-twisted M(1)-MBE L TORRERTH 3. 6 DML, M(1)* OFRZOT, FR
(2.5) 2155.
Vit R VS, &

VE = DML (ema eome)) ® (M(1)" (e F e-ma)))y

m=0

Virs = @(MO* ® (g4mo £ e-g-ma)) ® (M(1)” ® (€54ma F e-3-ma)))

wm=0

EEMAMINTHS. Ko THE 22 LD ZOBMAM VE & VE,, O MO1)*-m
BLLTOBRHSMRESATVA I MM 5. BEIBEHIREER 1.5 (1) LDHAS
MNTHSB. m]

BEMISR (2.2)-(2.5), # 14 R, fiRTEHEA-ER 4.1 © M(1)* OEHMBEORMD
fusion rule ZAWT, V¥ @ fusion rule ICBT 3 RDMEE [P 5.

0 2.4 WL W2, W3 ZELH VI-MBEET 5. CORF, KMEDILD.

(1) fusion rule N¥.y,. 13 0 7212 1 TH 5.

(2) BLLTD W' (i = 1,2,3) A twisted RiNBE2 51, fusion rule Njfiy,. 13 0 TH 3.
(3) BL Wi (i =1,2,3) @55 1 DAt twisted BMBTHOD 2 DAt F twisted Bz S
/&, fusion rule Ny, 12 0 TH 3.

TEADT AF7 W, W2 i ThENh M(1)*- BB M, N 255, W IRWS = @, M
EBEH M(1)*-MBOEMICHRINTRSET S, (1L3) &0, FER

dim Ii’f( W'w:wl ) < Eldjm IM(U*( ,wMi.\.' ) (2~6)
i€

2185, 0T, RBIC (2.6) OADA 1 UTFER D& SBEH M)+ M,N %8
DB T EickoT (1) MRD DT LERTTENTES. (2),(3) IKBIL T, (2.6) @
DM 0 L1325 & SREH M(L)H-ME M,N 23D 32 &ick>TERTES. O



Tg &

Fl 1(fhRE 2.4 (2) OEH) FAE, Wi= (i=1,23,k€{1,2},e; € {£}) &F
5. CORMEE 23 &0, ML)*-MBEELT W' & M(1)(0) THB. LIcSo>TER 4.1
ERER (26) &0,

: w?d M(1)(8)> _
dim Iye ( ) < dim vy ( prpayiaye sty ) =0

%85,
B2 (MROBOH) W = W2=W3 =V, &T5. OB Vi3, B M(1)--mE
M(1)” #EATVT, 5 2.3 ct D, M(1)*-MBEEL T,
Vi =2M(1)" e é M(1,ma)

m=1

LERMAREND. LM >TER 4.1 EFFK (26) &0,

. M(l,m
dim Ly (pg)” - )+2d‘mIM(')+ i ety )
=0

dim Iys ("5, )

IA

%5,

3 Bl V-IN@EDMED fusion rule

BIE T, BB V- MBEDM O fusion rule A& 1 TH 3 Z & 2B, TOHTIH,
fusion rule A% 1 12723 & SA8EH V- MBEOME %, B{689IC intertwining {EAFEMET
BIERXEH>TEAS. T, TN S UADOEY V-mEBEOHIZHRL T, #HEd 3 fusion
rule X 0 {2723 Z & HIRT. i 3.1 T, £TORERR V- MBEAIE twisted BOHITD
WT, i 3.2 TiX, H 3B vV, -MBPEHS twisted B TH 5 X ST DN THRRT 5.

3.1 3k twisted BIEXH V-INBEDFRE D fusion rule

[FLM] 0% 8 MTRENLL I, (14), (1.5) TEAShA3ERA%K )", 8 € L,
A€ L’aeM(1,8) B ue M(1,A)IZHL, RD Jacobi HFXE L(-1)-WoEE N~
LTWwa:

-'a( - )Y(a,zl)y°(u,zz) (~1)8N -la( )J”(u,zz)}’(a,z,)
=z; 16( . ) Y°(Y(a, z0)u, 22),

%y'(u, 2) = Y°(L(~1)u, 2).
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Gm(AEL®) ® pe L°ve M(1,p) ICHL, m(v) = ePeimiy TEBEND V,. OBRE
HOWRAMEL, r,s € Z,u € Vo IKHU Voo(n,2) = Y°(u,2)m vy, EEHTS.
O, Y., MV, IZHT3 ( Va4a e )_8.'20) intertwining fEf %% 5% 5. ([DL) 218).

Wi+ Va4

CD V, ICBY % intertwining f’ﬁfﬁﬁ&:’f'\‘ 14 ZAWT, ROGEEES.
B8 3.1 VBT 5 KRDOBD fusion rule IXETIZAEW ;

@) (g Y(1<ne<k-1)

Wi+ Wa,4L

(i) (V+VL*V*)(VL‘ L)&U( V“*’" )(0<r<k—1)

(iid) ( VLv..*,‘;;L ) ( e ,%L ) B ( w.n-AVr: ) O<r<k-1).

a/2+L a2+ L 124L

Kiz, 3!5 twisted BB W (i = 1,2,3) IZHL, fusion rule N}i1,, NBETRIHIE, T
B (" ) REE L2 2AVT, ME L ICEFSNTRIHOLThNI KT
ZL"ETT ED/DITR, DEFOMBEERRE+HTHS.

68 8.2 W, W2, W3 %3k twisted ML TB. TOBF W (i = 1,2,3) ARDVWTH
MO EE M T2 5, fusion rule NIy, RETHS :

(i) W'=vi Hho wewd LR,
(ii) W!=Vv; ho# (W2, W) iRoEoVnTFh:

(WAW?) = (V(, VD), (Vs Vo)
(Vlr+ln VL+L) (1 <rs<k-1 N A, ‘79 A )
(Vs Vart)s (Vijarss Vaar) 1S <k —1).

(i) W3=V5,,, »o@ W,W?) BROADWTIN:

(WHW?) = (Vaur,Vaer) (LS8 <k—1HD A 4+, #a/2),
(Vs Varr) A S r<k—1),

(iv Wl=Vyy (1<r<k—1) 22 (W2, W) iZROMEDWTHA:
(WEW3) = (Vi 41, Varr) (1 S 8,8 S k=102 A # A £4,,), = A).

HE8H. Y & ( v w’ ) BDF TR intertwining (EAFE LTS &, Y(1,2) 2 W2 5
W3 AD V*-tﬂﬁ&bf@ﬁﬂgfﬁé-ﬁ-z.éc._&i)‘ibfﬁé. & 2T (i) DREICHEIEL
Do,



(V3,1 VE,,) DA (i) OBEERE (i), (iv) KOWTHRD. JOBE, £T
W3 & W3 =M EBEHW MQ)-MBOERMICHRET S, TR, W 05t M(1)*-
BB M & W? OBEME M(1)*-BA B N T, £EO i I2OWT (M) B
fusion rule HFERBLIRHDERDIITEENTES; (FAE, 5 2 @0 2). &o
T (2.6) &V fusion rule N¥ry,. 3BTH 3.

B®IC (W2, W3) = (VI Vi) PREICLDT. ( VL_V:’;i‘- ) RO fusion rule

a aj24L
MBI BT EEFRT. ( ACTIY ) W=DBEBRRIIRT Z ENTES,
L af24L
me NiZHL,

Va72+l,[0] = M(1)*® (e’; + e—(%)) SdMQ1)® (et;- - e_(g.)) (3.1)

+

EE<. WE 22 X0, VH,, 0 B M(l,e/2) CARTS5. Y & ( v;v°’v’3‘,+L ) 1)
intertwining fERIRE 5. BE4.1(ii) KD, ue M(1)",ve Voot 0] IHMU, Y(u, 2)v €
Vioasl0(2)) BB, $ujz : Vi sl0] & M(La/2) & (2.1) TEEL 2 M(L)*-MBEL
TORBETS. MHEOD ¢ =Pojp EHL. TOKF, u e M(1)",v € M(1,a/2) IZHL,
(poYod)(u,2)v = ¢Y(u,2z)¢™ (v) TEHEENDIERR g0 Yoo i ( wqye )

M(l,af2)

B intertwining {EAF 25X 3. IM(l)"_'( M“)"_’“";{f')alz) ) DRTTIT 1 BOTHIETS

intertwining fEAKIZ M(1)-IN8 (M(L,a/2),Y) DTHAEAR Y ORBBETEHEASNS.
EoTHERMdec CHFELTETO ue M(1)",v e V), [0] IZHL,

Y(u, 2o = d¢™'Y (v, 2)(v)

EBTB. GyueVy ML, Y(u,z) =%
u=h(-1)1,v = ea/2 +e_ap EBMNL,

neZ #(n)z7"7! (3(n) € End V], ) &L,

h(0)(es +e-2) = d{h, %)(eg. +e_s), (3.2)
h(-1)(es +e-2) = d(h(-1)es — h(-1)e-g) (3.3)

2183, ZTT (h(C1)1)(n) % h(n) EBVE. FREBCHETIIEIEST,

E,,_l(es;. +e_§;) = (eg. + e_:;.), (3.4)
E;.-(h(—l)e.;. - h(—l)e_%) = (h, a)(e% + e_g_) (3.5)

2135, LT EB=es+e €V THD. F=e,—e_q €V, &L, Jacobi EFREK
D, m,neZ iU TRRME

[Bumy ()] = = (b, @) F(m + ) (356)



2083, £2T (3.2), (34) &V F(k—1)(easz+e-as2) =0((36) Tm=k—-1,n=0&
B3). —%4 (3.3), (3.5) £ 0,

~(h,a)F(k — )(eg +e-g) = [E;,.,l.z(—l)](e% +e-g) =d(h,a)(es +e-g)

((36) Tm=kn=—1ER3). #oTd=0. 5T, Y(h(~1)1,2)€a/2 + €-asz) = 0
+
THY, HE1LI LD Y =0 %83 &K, ( Yerse ) B0 fusion rule & TH 3.0

Ve VvV

BT, S 1.2, MIE 2.1, B 2.4, A 3.1 RUGE 3.2 L0, KOMEEES.

5 3.3 W', W2, W3 &Ik twisted B! V;H-MIBE T 5. T OBF fusion rule N1y i34
1 T3 3. fusion rule Njiiy, 7% 1 ERBLETARERE W (i = 1,2,3) HKRDBED
NIFhDEBRETILTH S :

(i) Wh=V} o w2 we

(ii) W' = Vg o (W2, W?) RROEONTIMNTH 3:

(V& VE)s (Viarns Vainer) Vaean Vaar) (1< < k- 1).
(ii)) W' = V},,, B8 (W2, W) RAOEOVT NN TS 5:
(Vi' Vigarr)r (VE0L)s VE) (Brars Vapa-aar) 1 ST <E-1).
(iv) W' = V3., O (W2, W) RROBOVTIATS 5:
(VE VI ((VEr) V) (Vaears Vaga-aer) (1S <k—1).
(V) W' = Vaas (1 < < k= 1) DOM (W2, W3) RRDEONTNNTH B:

(VEVarrr)y Vaar, VE), (V:72+mVa/2-,\,+L), (Va/z-,\,+L,V:72+,,),
(Va4 Vaar,+1) (1 <8<k —-1).

3.2 twisted BUINB¥Z ST fusion rule
Pr=L°x {1,2} x {1,2} EB<. 5T (A i,f) € Pe Bt

(_1)(A,a)+65.j+l =1

% #7- 7 & ¥, quasi-admissible triple LERI LIZT 3. £TD quasi-admissible
triples DR THMEE Q@ L#ET. FT quasi-admissible triple (\,i,7) € Q¢ XL,
(,7r ) B Vi BT 3 intertwining (ERREMILT 5.

w vy



[FLM] O35 0 BTRENAE 512, (16)-(18) THEAShBHAK Y 12 fe L) e
L°,a € M(1,8) B u e M(1,)) il , KD twisted Jacobi EFX

5( )y”(a,zl)ya(u,zz)—( _1)@N -‘5( )y‘(u,zz)ya(a %)

=— > '8 (( g . Ji’) )y"(Y(oP(a),zo)u,zz), (3.7)

p=0,1

& L(-1)-Ba5E

—y"(u,z) Y*(L(~1)u,z) (3.8)
ERAEL TS, O, ROFHENEDILD.
I 3.4 (1) EAIR P 12, A € LWL, (4 MDD s ) B (ar 0T e ) B

M(1,A) M()()E M(L,A) M(1)(e)
DF TRV M(1)* IZBT 3 intertwining (FRFE 5 X 5.
(2) TEF# V00 % u € Vi IZHL ()P 00)(u,2) = V(6(u),z) TEHETS. O
V0ob it M)t IZBETD (0, 00+ ) HO intertwining EARE SR 3. iz y*
5:; ;f' 00 @ M(1,A) @ M(1)(8)* ~DHERI~Y b &M I(,,, ¥ ) OBIE

AR HEET 5.

T=T'@T RBRE, BEFRYE®R ¢ € EndT % ¢(4) = &,9() = {, TER
T35, IITL(E=12)R T oOEETHS. A€ L°ItHL, A = ra/2k + ma
(-k+1Lr<kmeZ) &L,y €EndT %

Yr=€naoyPo---0yY

EEEBETS. A€ L°yue M(1,A) ML, Y(u,2) = Vi(u,z) @4y EEHEL T, Th%E Vi
LICBRBICHIRET 5. ZOR ¢, OEBKRY (3.7) & (3.8) & D, ROGENERITRES.

6l 8.5 (1) Ae L° IZHL, BILER o) IZROERERD:
HEBED e LiTHLT egoYy = (—l)(ﬁ"\)tﬁ,\ oeg = Yiip.
(2) a E VL’“ e V,\+L l:ﬁ[/
"6( - )Y’(a, 21)V(u, ) — 6(
-15

= %2: ((-1)?%) (Y (6*(a), 20)u, 22)

') Y(u,2)Y*(a, 2)

)23 P
-‘E.)-?(u,z) = ,)'i(L(-l)u, 2)
MR DILD.
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# quasi-admissible triple (), 4,j) € Q¢ ICHL, YA(T¥) =T/ TH B LMbh 3. Lo
TREEB5.
58 8.6 ()\,4,]) € Q¢ % quasi-admissible triple 3 %. ZOK, Y D V., @V AD
T;

FIBR V' 1T 3 ( G ) IO intertwining (EFI K& 54 5.

AL
Y Z2BEMT V-BIZHIRT 2 Z &ick o TWE D@ Vi I2BIT 5 intertwining £
AFREMRTHEMNTES:

W 8.7 ROBITHIET 3 V;H IZMT 5 fusion rule X B TR,
(i) ( Vs ) ( i ) (r € Z, (Mvirj) € Qe),

Tie i
Va4 Voo Vigr VI

Ttk

@) (' hne ) (e ) e (12,

Gy (4o ) (L s
V:/H»l. (er-*)' ) Vo+/2+l. (VT:.:I:): ] V/H-L (VTl i:)l V/H-L (VT’*)' .

il ﬁﬂﬁ34&ﬁhﬁ36¢t0rEZ(/\,,z,J)GQ,;ki']‘l,yii( vt )Lw

ar VI

( i ) MOFE TV intertwining fEAREEZA 5T NGNS, Lo T (1) DR

Vier VIok

@ fusion rule [FB T .

Kiz (i) & (iii) DEOD fusion rule HBTHRNILERT. BB 4 (2) EF 14 &
0, Y(utb(u),z)v = ()£ 00)(u,z)v FEBDOBTIEZWVIT ue M(1,N) (A€ L),
v€ M1)(OEITHLBTHRAW. ZOXSICME 36 LD, Yidie 1,2} iTHL,

174 v vE vF
( v li".',.._.* )’( v vt )’( Vanss L(VZ“'*)‘ )’( Varzer (VT Y )
OB T/ intertwining (EAKEEZX 5. ¢, (A€ L°) DEHELD, me Z ITHL,

Y_ma = Ymas ¢'—(a/2+ma) = e-a¢u/2+mu (39)

MROILD. A€ L°,u € M(1,)) IZHL T, 8Y(u,2)0 = Y*(8(u), z) @ ¥ BEDILDDT,
(3.9) &b

0Y(u, 2)8 = Y(8(u), z) for u € Vy,
0)(u,2)0 = e,Y(8(u), 2) for u € Vayassr
285, #-oT, Y 13 (i) & (iii) DROFTA intertwining R REH X5 Z Lathh
B PR, ue Vi, ,ve (V) ITHLT,
03 (1, 2)v = e, P (8(u), 2)0(v) = Y(u, 2)v.
EoT, Ju,2)v € VPH{z} TH3. #-T, Y i3 ( NG ey ) HOBTHN

intertwining fERRE 5 A T 5. a
KiZ, ROMEEFRT. EHAIIMEE 3.9 DRIZFAS.
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T;

8 3.8 (1) i, € {1,2} ML, i#j A5 ( V;V;vr . ) mwt( . ) B0
fusion rule 3V TH 3. ‘
(@) 1<r < k=L € (L2} KHL, (o £1msi, (| W, ) 20
fusion rule I3{TH 5.

k-8 j+1 v,!
(34, € {(L2HHU, (-1t 217850, (o W yns ) BRE (s s )
B fusion rule 3B TH 3.

B 3.8 1, ROMFOFLLTHLNS.

G 3.9 W REM VH-IIBEL W iZ 53 ) € I° IR M(L ) CRES, ML)
BAMBEETELEETS. 2O, U (),1,5) € P H quasi-admissible triple Tl
251, ( Vv' ) RO fusion rule B TH 5.

AR, ( |, vT + | B0 intertwining tEfIE Y % ( A, "\‘)’“5’(’”(9)* ) D intertwin-
ing f‘FFﬁ$f‘.‘.59~'C V& Vol DBEESTHRL, TOFRLWEEEREEIIEST
BENS. B <IZ, [A2 2BELTFE .
toEE 3.8 IR, BEHIDMR (2.2)-(24) &V, Vi 1 <7 < k-1) R M(Q,),) %,
Vi, B ML, a/2) CAEBEAMEE, TLT VE 12 M(Le) K AREEAMEES
BT EMDND. Ko THhRE 3.8 13MmiE 3.9 LD HMNSD. a
BB, ROGEEFT.

3 3.10 (1) i € {1,2} ITHL, ( v:f’vt . ) BRU ( V_VTV’: N ) K10 fusion rule ¥
BTH5.

V TL¥F VT: x V'rl-* .
;212 ( ;lﬁ“m%i.gg 7).: ( V:,“L oy ) ( V:""“‘L vy ), ( vo-12+LL (vg»*y ) B
ion rule .

. Vi B M()Y-IEE M) 2 ENTNES, R 41 &0 (|, MO0 L)

N M()t M(1)6)*
& (e ) B fusion rule RBROT, (1) K 14 Lo B2,

K, (o Wanay ) By Fiymsy ) BO fusion rule HETHBTLER

apzer | Viner (

7. (2) DR HREML TSR A . '
3.7 (i) £V, i € {1,2}e € {&} KHLT, ( Lo ) B fusion

v:z L (VT-.()I
rule MBERSANL DA ¢ € (£} NEETS. & (ne) = (£} £T5. OB,
(vs, ¥ ey ) B fusion rule A BT LTS BTGB, TOTLE

2L (VT 1)

RYIeDIT, FRENHE

T o
IV+(V VL )—)IV:(V V-’ V1‘¢), )’ pr‘IOy

al24+ L (VL ‘)' 124 L (
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WEHTHBIEETFT. TITpe B V) 5 VI AQEBRRET pro) I2
b€V v E (VIY 123U (p2 0 Y)(u, 2)v = p+(V(u, 2)v) EREN B intertwining #
ARTHS. TORBICHR 14 £, E80 (0 Wor, ) BOFTEN intertwining

af+L

ERHR Y A

By(ea/g + e_alz, 2)0 = (—1)“-’J’(ea/2 + e_alz, Z) (310)

R T I EETHEHTH .
Vi = (VF) &L, V3,000 & (31) ObDETE. O, Y i3 M)t iKY
3 ( R )gm intertwining ERXEHX 5. LIdt>T, M 34 (2) &0

Vo/:+l.[°] VL‘
I\f(l)" ( VZ-‘. T; 74
! v;f/,“[o] Vi

u € Vi, 0] ITHL, YE(u, 2) = 6:Y°($xap2(u), 2)85 (3.11)
TEHREN S intertwining HEA K Y= TROND. Lo TEK 1,0 € CHFEL T,
Y(u,2) =Yt (u,z) + Y (u,2) (3.12)

MERD v e Vi, [0] KHL TRDID. & fehiTHLT,

exp(z An ) 3 pu(B)z" € (End Vyo)z]]

n=0 n=0
ERS. CORF E=eateq €V ETDE, Bo(eg+eg) =pui(a)eg +pi-1(—a)e_z €
Vi [0] £72,

b3 (Eoleg +e-g)) =pe-1(a)eg, @-3(Eo(es +e-2)) =pr-1(—a)e-g
285, 0L S (3.11), (3.12) &1,

[Bo, V(eg +e-g,2)] = V(Eo(eg +e-3),2)
= ¢i(1Y’ (pr-1(a)eg, 2) + 2’ (pr-1(—a)e-g, 2))¢5 " (3.13)
85, —F, (37) &0
[Eo, $:Y(ex3,2)¢7'] = eatid’(Evfesg), 2)¢5"
= (-1)*¢’(m-1(Fa)ezs, 2)e; -
AR DILD. §E- T, B (3.11), (3.12) &,

[Eo, y(e; +e_g, 2)]
= (—1)&"C1([Eo, y+(Eo(e§. + e_%), Z)] + Cz[Eo, y_(Eo(eg + e_;_), Z)])
= (=1)%2¢i(c1 Y*(pr-1(— -3, 2) + 2V’ (Pe-1(a)eg, 2))¢5 (3.14)
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285, (3.14) M5 (3.13) £5I< &,
(c1 = (=1)%2c2) ) (p-1(@)eg, 2) = (1) (p_1(—a)e-g,2)|¢;" = 0.

Z OB, B 3.4 D5 ¢, = (—1)frc, BB, EI= u € Vi, [0 KHLT, 095(u,2)0 =
V¥(u,7) BOT, (3.10) KED LD T EMtbhs. o

RRELT, 6l 1.2, M 2.4, M8 3.7, miE 3.8 RUME 3.10 KV RODBEEES.
o8 3.11 W W2, W3 %854 VH-IEEE L, WIhhdt twisted BIMBFE T35, Z OB
fusion rule NV B4 1 THB. W bt iwisted MBTH S LRET S &, fusion
rule N2, 2 1 THBBEFHEBE W (i =1,2,3) ROBEDWTNNE AT

&ETH5:
(i) Wl = (VDY 2o (W2, W3) ROMDOWTIMNTH B;

(VE (VE5)) (V5 VE) (Vs VI ) (V) (Viael))s
(Vasr, (VYY) F0203 (V5 Vi pn) L < F < k-1, 7 iZBK),
(Vapsr, (VIEY) 2203 (VP Vigr) (L < 7 < k-1, r IZE).

(i) W! = (V7)Y mhofl (W2, W3) ROEDONWTNMTH B;
(VE (V) (V5 VE) (Ve Vi ™) (V) (Viain)),

(Vapazs (VIVEY) E7202 (VI Vi) U< r < k-1, r IRBE),
(Va1 (VEEY) £ (VEE Vi) L S r <k -1, r i38K).

(iii) W' = (V) o (W2, W3) ROEOWThh TH 3;
(VE (VE*Y), (V5 VE) (Vs V™) (VPSS (V)

(Vansr, (VEEY) Sk (VEE Vig) (1< r <k -1, r IIEBXK),
(Vaorr, (VIEY) 202 (VA Vi) (1 ST <k —1, r B3K).

(iv) W' = (VY hoid (W2, W3) ROBDONWThMTH 3;

VE VDY) (V5 V) (Vs VEr) (V) (Viaer))s
(Vaosr, (VREY) 7282 (VEE Vi) A <r <k -1, r 1I3{BX),
(VD (VIEY) £72iE (VEE Vi) L S r <k -1, r BFK).

i 1.2 0 2.1 K& > T, EROBH VI-MBE WL WLWITHL, (", ) B
@ fusion rule {3, ME 3.3 L HE 3.11 IZ¥T SN/ B D fusion rule DVYFTIMIT—FT
5T M5, §E-T, i 3.3, M 3.11, HE 1.2 RUGHE 2.1 £RAWT, fusion rule
NBLERSBVETOREZETHIENTES. LML, TORRIEL2ZDT, M(1)*
IZB9 5 fusion rule EHHUHTROHMBIZEAD I LIZT S,
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4 @R

C TR, [Al] TREL /= B8 MQ)H-mBEDOE D fusion rule &, ZORED 2K
RO 1 DOTHBHH V-MBEDRID fusion rule Z¥4T 5. TORKRIL, REMEEANWT
FERE kX2 BEPTIMNBLELL BN, RITKKABI>TLESIOT, k NBHREFK
DBEITHESIL TRRBZ LIZT 3.

@ B MQ)*-mMBDMD fusion rule

IR 4.1 ([AL]) M', M2, M° 2B M(L)*-MBEET 3. ZOBF fusion rule NI, 1X
# % 1 T, fusion rule Nii{,. 2t 1 THBILE+HFRER M (i =1,2,3) HWKOFED
WFNhRBETETHB;

(i) M'=MQ1)* D M2 M3,

(i) M* = M(1)- D8 (M2, M3) RROHEDWThNTH S:

(M(1)%, M(1)F), (M(1)(6)*, M(1)(6)7),
(M(1,A),M(1,p)) (A, p € 5— {0}, (A ) = (s, 1))-
(iii) M = M(1,7) (Ah — {0}) DD (M2, M3) RRDADNTNMTH 3
(M(1)%, M(1, p)) (M(1, ), M(1)*) (p € 5 — {0}, (A A) = (i, 1)),

(M(1,p), M(1,v)) (s, € h— {0}, {v,v) = (At p,A L p)),
(M(Q)(0)*, M(1)(6)*), (M(1)(8)*, M(1)(0)7).

(iv) M! = M(1)(6)* MDE (M?, M?) BROEDVThNTEH 5:

(M(1)*, M(1)(8)*), (M(1)(6)*, M(1)*),
(M(1,X), M(1)(6)*), (M(1)(6)*, M(1,X)) (A€ h - {0}).

(v) M! = M(1)(8)- MOH (M2, M°) RROEDOWTIHTH B:
(M(1)%, M(1)(6)F), (M(1)(8)*, M(1)7),
(M(lv A)vM(l)(a)t)) (M(l)(o)ivM(lv '\)) ('\ €h- {0})
@ B8 V-MB DM D fusion rule

EHE 4.2 ([A2) WL, W2, W3 B8 VF-MBEE TS, Z O, fusion rule Ny, 1254
1 THB. &5iT, fusion rule Njjoy, # 1 THILETHRER W (i =1,2,3) 20RO
BEOWThIEBIETIETHS:
() k B%DIBE.

() W=V} D w2 wsd,



(ii) W' = V; Do (W2, W?) AROADNThNTH 3:

(VL:*:’VI:F)’ (V:k/2+L’V:;2+L)’ (V[:rh:k’V[Th:F)? (VLIE‘*’V[T:,:F),

@

Vs Vaar) 1S 7 <k -1).

(iii) W' = V5, DD (W2, W3) RROMONTIDTH S
(Vi V) (Vi VE) (V5 V5), (V5 V),
(Vars2) Voszr4t) 1 <r < k-—1).

(iv) W' =V, DD (W2, WP) HRDBEONTINTH 3:

(VE Vo)) Virarn VE) (Vi 5, V), (V5 V),
(Vart2y Vaprr+t) 1< r < k1),

(VIW'=Vy 4 1<r<k-1)DD8 (W, W) NROEONWThMTH3:

(VLi,V,\..+L): (V,\,+L:V[?;)v (V:;2+L’Vﬂ/2"\r+")’ (Vu/2—4\r+L)V:;2+L)l
(Va4 Vaaa,+1) (1 <7 <k - 1),

(VIS V), (V5 VET), (V85 V%), (V5 VEF) r BB,
V4, V), 4.V, (V4 V), (VP Vi) r s

(vi) W' = Vot vl (W2, W3) SROEDONThMTH 5:

(VE V), (V5 VE), (V¢$2+L:Vl.n'i): (VZ.“*'V:}HL)’
(V,\,..,.[,,VLT"*) Fkik (VLT":E, Wtt) 1 <r<k-1,r B )s
(Vaor 1, V%) 22 (VA Vo) A <r < k-1, r B3K).

(vii) Wl = VI~ ol (W2, W) MROEDOWTNMTH 5:

(VE VL), (VE5VE) (Ve ViT), (V5 VL),

(Varer, Vi) ER (V5 Vo 0) (1S < k-1, r IRIBE),
(Vasr, V) ERB (VA Vi) 1< r<k-1, r 3FK).

(viil) W' = VB oMl (W2, W3) BROEDNTNNTH 5:

(VEVEE), (VP VE), (Ve VEF) (VP4 V),
(Varar, VEP5) ER (VP Vi) Q1 <7 < k-1, 1 1218,
(Vara 1, VirE) £ER (VI Vig) A < r <k -1, r IZEFE).
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(ix) W' =V~ hof (W2, W3) BROEDOVNThHTH 3:

(VEVET), (V5 VE), (Vo V) (V% VL),
(Vat1, VEE) £ (VD% Viar) 1< r < k-1, r 2BK),
(Vs 1, VIV2) £ (VI Vi) 1< r <k -1, r ZEK).

(IN) k RHFROBE.
@ W=V} ho wrxws,
(i) W' = v Hof (W2 W3) BROEDNThMh TH 3:

(VEVE, (Vs Vinea)s V5 VER), (VP VE)
(VarttsVa4r) 1 Sr <k =1),
(il)) W' = V3, , MO (W2, W) AROEOVTANTH B:
(VL * /2+L)’ (Va‘72+qu), (Vl:n’i: VLTME)’ (Vl?‘,‘i’vl:n';)’
(V'\r+L) Va/2—4\r+L) (1 S r< k- 1)'
(V) W' = V5, DO (W2, W) HRDEOVTIHTH B:
(VE V) (VE L VE), (V5 VET), (V5 V),
(Vasts Vapzoast) 1 S <k —1)
MW=V, o A <r<k-1)2D# (W, W3) NROEDONWTINTH 3:
(VEsVaer)y (Vasns ViF)sy (Vigarps Vajz-a+s)s (Varz-arsis Vajagr)s
(VasrsVarer,+L) 1 <5 < k-1),

(VE5.VE5), (V5 VET), (Vs V), (v, v ) (e RER),
(VIS5 VE5), (V= V), (VP V), (P VET) (r REH).

(vi) W' = vt o (W2, W) RRDEDONTHNTH 3:

(Vl.itvl-f‘h*)a (VZ" )i ( /2+L’ i)’ (VT * V/2+L)’

(Vapr 1, VIVE) E£7203 (VEE, Vi) (1 <r<k-1,riXBK),

(Vaosr, V%) £ (VE Vi) Q< r <k -1, r I3EFH).
(vii) W! = VI~ o (W2, W3) BRROEONTIhHTH 5:

(VL*’VI‘.IL;)a (Vl:r’i V:F)i (Va:72+L’VT’ 4:)’ ( Tl * V/2+L)’
(Vasr, VIVE) £ (VP Vi) (L <r <k -1, r 1ZBXK),
(Varsr, VEE) £ (VI Va4r) A < r S k-1, r I35 HK).
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(viil) W' = V2T vl (W2, W3) HAROEDNWThNHTH 5:

(VL ) T"*)’ (VTI'* Vl:.h)» ( af2+Ly Vl?.m:)v (VLL*’V:}%L)r
(V,\'+L, T"t) X ( Tl'* VA.-+L) (1 <r<k-1,r (2 e} ),
(VoL VIVE) £12 (VI V 41) A< r < k-1, r BHEK).

(ix) W' = V2~ ol (W2, W3) BROEDONWThhTH3:

(VLi»VlT’ ;:)’ ( g VL:F)’ ( /2+L’ i)a ( T,' u;/2+l.)’
(Va+r, V) FIWE (VI V) (1 <r<k-1,rREK),
Va1, VIE) B (VEE Vi) L <1 <k-1, r BEFK).
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On 78-dimensional Schroder lattice for Foyy

At#E EBH (Masaaki Kitazume)
FEELR BER ¥ - FREEER

AL O VICRERL, REMILK (WHKE) &kREBRIZESWTEY,
EHIZABNICEAR—E (W KE), RABREK (UEKE) LoBIENRIC
FLEAHTVE,

1 Soicher’s graph & 56 Xt lattice

FORZ VIX, 44 (2000 ) D 4 B I2SED F 5IZHITE LTV RBURH Bill
Martin ICXBEIF— b—ZIZOoVWTHILETERLZEIZE B, FhIT,

L. Soicher, Electronic J. Combin 2, 1995 #N1
http://www.combinatorics.org/Volume_2/volume2.html#N1

THRENTUV'D My, : 2 ¥ HTFERERC b - distance-regular graph {22V T D
BB Ch o=, TN F 7IX Steiner system 5(22,6,5) bR EN D 672 AD
77 7T R O integral lattice IZHBHRALZ LB TED LD THolz, ZhiZ{d
feiEZ, B4i3P LANCREE LT, £hid, 2000 5§ 1 A ORKEEH T
BEK (tX) 0fF&RELLILOT, E54&E, —ETF-oTLEANL
Us(2) DRBEBR A 22 RITD lattice ICRBLL T, ED lattice D Leech lattice &
DRFBEACHITTEE V2D TH 2T,

SREEIIEET T, 4BIO Soicher graph DMBMHIAHZN, HHAKDFED% THE
RERLERRIPTH R L BELEOTHD, ELITRANEN, 40 55 Kt
lattice X, 2 - Ug(2) AEMT 3 56 IR IT lattice 1O/ HNDITENRZVETAL
Too HLWINIMEET 525, RAKIL tight spherical design & OBEN L, Zo0
56 KRB EZ I NT TV D THo 7, Ehbid, LENRT ORI, o
56 RERRE, EOBHAKD 2 KR\ ELENIT, 78(=22 + 56) RILFHAS
T&ET, FIIZiX& o & Fischer 8§ Fyp BERTAIZBVVRWEWI TR
DTHB, KR, Fpp I8 KTOBMBREFE-STNT, TOWMIBE2- Us(2) ~
DEIRRL 22 + 56 & AR DYENHBEER (ATLAS) 22 6bd3, T3 LIRPEAE
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t¥ T, Schréder &) ADERXEEEL - TWT, £ZC Ry, DERAT 3
T8 RIED lattice XMIREh T3 2 BvWHL T hi-nTh 3,

* * *

Zhd, SERIDGFEOEETHY, 2TTLH 5B, FHILTTFED IoHITL =,
ZFLTFRLULED ZERRBI LR oT=Z ki, BRAIZVP LB LIz, DT
$HbB, UTF, TIIEB/BWIEABIZHONT, ELBRREZ &zt 3,

2 Fischer # F, & Mathieu # My,

Fischer 8 Fy, X, VWS 3-transposition ¥ & FRIEN 2 HREEDON, KER
HgilE 2 2@ R
F241F23:F223F21

DODAD—DOTHDH, Zhbid I-transposition DIE| D (FRbbBVebe D I
XL, ENOLDOMEKIL2 T, ho, TORBDAE [ab] 1 1,2,3 DWTFhh) TA
Bah (F, = (D) (n =24,23,22,21)), O &HODFT (d€ D) DFLMLEEZEZS
L&

Cra(d)/{d) = Fy_y

MEYIULD, ZOFT, F(ZOBEETERTFERDILERDH D), Fiy, Fy D3
ORBERHMBET, BE—2IL R =Us(2) (=2=F Y8 B IUL, RIIY
BgEREIC 2 B,

Fa(n = 21,22,23,24) @ 2-Sylow B S &#—2W|Y, L:=SnD B, T5¢
L i (3-transposition DHEFH6) BVMC AR TR B, BF n ik, RIEZD
L ORDBEERLTVT, Tk 2" OEKRTRELEMT D, EL
T, TOERILFIC Mathieu I M, BRIADDTH D,

|L| = n, Np.(L)/{L) = M.,

n=24 ROFAELSBEIABK My, KBNh5, —&IZ, M, 12 L E(n-19)-7T8
TV D, My, Mas, My, PSIEERIBMBETH Y, BB My = Ly(4) (HER
J6RE) SRR Y 3L,

&‘:ﬁ% Fn ‘\:&60 Fn >2- UG(Z) > Ma kb‘iﬂﬁ'ﬁgﬁ‘??ﬁmﬁ'@béo
Fn=(D),deD t¥5¢L,

Cr,(d) 2 2-Ug(2) (2 DPLEREHSFHZFRILK)
DPRIMLT D, &b,
|L| =22, Ng,(L)=2": My, CHESD



Thd, SRV LBAXETS, D ~D Ng,(L) DIEREE2X D, ZANRIX
32 DEIZS B,

D = LUX; UXg
ZITLUADOEGEY, X, ={z€D:|CL(z)| =6}, Xa={z € D:|CL(z)| =0}
EREIND, E6IZ, 1€ X OEEMRIEN My, LRBLRBFICRD, TR0

Np, (L) N Cryplz) = My,  ($51Z, 2- Us(2) > M2a)

Thd, £k, X, ORBRIZEND Cp(z) £V D 6 AREIL, 3-(22,6,1) LV IR
FA—=FDF¥ A (b LI Steiner system 5(22,6,3)) D70y 7ilRzoTW
3, $i2bb

B:={CL(z) | z € Xa}
Bl L, _7 (L,B) 270, L OEEOBRRZ3REZELBOTay 7
RIelZ—DMEET D) WO HEMEY D, BERHENSG, ZobE 0oy
s R, (/G =1 ThHLDbIBIES,

BHRUIZ V- Soicher D/ 77 #MIATH7-DIIE, LI —ELETHD, &
HKE V) Mathieu # M,, iT extended binary Golay code G,y P EHEFIRMELE L
TEBTHILENTES, FLLVERZFIEBLT, ZBTHWIREDAZEH N
THL. 4 REA QEZHY, TORBYRESLEL 2k F, LD RERS v
ZMERRT, I T, MEEBIESONKFEX+Y = (XUY)\(XNY) TE
#T D, Gy HED12KRTHHLEMTC, EBROTDEE AL LTORE) 2

0,8,12,16,24

ICBAEWVIHDTH B, ZDXHRa— ik (EREIZIE, Roe/EEXT) —
BTy, T0OLECREENS M,, LRABTHD, ZDLE, My, 2 Q kS
B BIZEBAL, #0028 a,be Q DETEDEHREDS My, EWVIWIR B,

Mz, = {0 € My, | o(a) = a,0(b) = b}

Gy PBEMLABDI L, a,b ZELLORTEEZT, a,b RV V-6 HEEDE
EEEZxhE, ThoMESR~<E 5(22,6,3) D7 ry s DfEEELD, i,
Gu D012RBEDI L, a,b D—FDHEESLLDEEXD, ZOBA, TOH
BALFRLHTREZE O OT, T CEXZHFAR, BERIHET, M, 25, %
DE S RARTEEH LABIIERT S, LWHHTHs, RLHELR, LLE
SE2ELNE,

Z:={(A,B) | {a,b}UAUB =Q,|A| =|B| =11,{a} U A, {6} U B € Gu}

ERABIERT50TH B, TORE (= |Z|) X 672, BIRD rank (1 ROEE
HoBOMEOEK) X6 THDH, 0 T 2RHE L LT Soicher graph A ER
Ehbd, TAIXBREERSZ 71282 Y, valency X 110, diameter (X3 T 5, L
ML, TOTTTD edge #EBTHDIE, FHMPERZ & Tiddevy, B, My,
OEETIMRICITTRBER LR S,
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3 J3570BHAH REKMEESERHND)
T, —BBRNLHEDD, (G,A) 2TTBERRLTHILE, A$%2—2 Yy K
LMD lattice L (23 B¥iATe & 12,

(1) lattice L %, £0HAME A* THERZH,

(2) BEREE Auwt(L) 2 G LRMRSBHE G- 85,

(3) Bt L LTORAE (G,A) = (G, A%) DRV IH
ZELEEIILIZT S, WHOED (G,A) & (G,A7) LER—RTE, DL
%, % A ® Gram matrix

E= (Ery)r.yeA
BEEFETHY, G OEMICBALT

Epy =(2,9),Eqy = 3(=)9(v) (Vg € G)

B IL->TD, REMASERICENE, Tl Lid, E X, BRREANS
fEbh 5 Bose-Mesner algebra B(G,A) & ENB Z L HHBRL T3, 7L,
Bose-Mesner algebra B(G,A) Lit, KDL I2bDTHD, ac AIZHL, ED
BEMSIBE G, LEL, G, DIERICLSPENREYL

Ao = {a},Al, ceny Ad (d = ra.nk)

LB LIcT B, Bl A; BT 3/81TIE A LRT, T2DL, A2 A
ROEFITFIT

(A)ey =1 39€G:g9(x) =a,g(y) € A

TEBHINDZHDTHB, EHENO Ay =1 L725, Bose-Mesner algebra B(G, A)
RKRTCEBBEIND,
B(G,A) :=( Ao, A1, Aa )¢

&T, $Z (G, A) A multiplicity free T3 5B, Bose-Mesner algebra B(G,A)
SRALRREICR Y, REhERCERIND, ZhE, BBy, .. By ERT L
L&D, ZIT, Eg=p5J (RKL JRETORSN 1 THITH) LR
ENTED, 75L&, %D Gram matrix E 1, ThODBEEESTE =3, ME;
EVWSEIIREND, 2T, THIDF 7

rank(E) = Y rank(E;)
Ai#0



LHETE B, Zofit, A DAL lattice L @ rank R LT3, —7,
ECBND E; BIHRA (dE) LHAR2VDITE,D, rank AHRNRE (A
HAAZWH) Chiud, lattice (TR VBAVWRIBRERITHAZ LIRS,

ZZ T, UT Tt E; i rank O/ WA A TV S (rankE; < rankEjy,)
borTs, iz, HENLDTWEIIC (b L IZHBREDND lattice A3 integral
KRB ERMELT) RAVERICRD LI ILERFLTBWT, Thidd
TE; ¢z kit 3, (bbBA, £57 5L idempotent TIERL 22%,) Bl
RIEX Ey=J T, FDrank iX1 TH B,

$l1 (Us(2),T) BEELLTII2=F2 U Us(2) MY, TOHRLRALZH (==
# Y Z2M) FS {2354 5 maximal totally isotropic subspaces D&% T L <,
[Tl =891 Tdhb., ZDLZE, rank(E,) = 21 ¥ (Eq RV T) B/\D rank TH D,
$7- E, OFSITABBE LRV, BB THRLEZL S I, BOPERKICRE L
SCEEMLTBL L, TOMfiE 8,-4,2, -1 DWThHT, 8IEFARCEA
TWd, ZDZ EiX (E=E, L3k T i 21 KED integral lattice D/ )V A
(squared length)8 =7 P TREIhBZ LTS, LHL, ThTH (rank 33
AFEIZL) BV lattice IXTERV, £Z T, KOL S RFEERS,

= 8 -4, 2, -1
- 12, 0, 6 3 (+4)
- 4, 0, 2, 1 (x1/3)

HRIZ4ZFRLTITRARENIZLETHB, 42 BTEVD ZEIF4J(=4E,)
ERTEVWDI ETHDH,D, E =4S+ E) &) Gram matrix 2872 &
72D, TIZTIET 1322 Kk lattice D/ VL4 DT MATRENTVE,

F£ix, Zh Leech lattice 2258615 222 BEMT S 22 KITED lattice (T
bbb, 2000 F 1 A OKRHEPFOELTHEK (LK) B LIZRFIDOVL D) &
RIRNZ25, ZHIZHDWTHIBIZEER L TEZ 5, L % Leech lattice & L, Golay
code MBAEDHFETHR L THBL, ZDHZRAHES Conway D -0 THB,
ZDLE, a=1/V3(4,-4,0,0,...,0),b=1/v8(0,4,-4,0,..,0) € L THY, a,b
PEETD .0 DBHHE 222 LR T, O, o,b L EXTHLZ FATER
&N 5 sublattice IZtEfT 5, “h%d Up ¢RI EIZTHE,

Uz = {(w, ..., v24) € Leech lattice | v, = vy = v3}
THHN, BLWMAE2RO3 2O E—DItELDHTLES &,
Up= {(\/5‘01,04,...,‘024) l (vl,..., vu) c Uzz}

EVIESIZ2KED lattice & LTREND, Thds, BIBREDE=L4J+E)
EVv5 Gram matrix b2ERRESATWVEDTH S,

2RI, IO lattice DRIEN G, BEOFRE 222 = Us(2) BBON3B, Zh
BHERANZIZA 7 bDHAERL2DOTH T,
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#l2 (M3;,T) Mathieu B My, &, 2fiTHALL T (|3 =672) ThH3, =D
BEY, BADT L 71% rank(E,) =55 C, BB EEEROZ LT3 L

(Ey)ey = 55, 13, —1, ~15
- 56, 14, 0, =14 (+1)
- 4, 1, 0, =1 (x1/14)

LiznT, &(J + Ey) £v¥) Gram matrix 23RV lattice 215, Zh# U &
Ky LicL X,

2HTH LB~ Ohizd o7 Soicher graph 1%, T lattice IZ3V T iZffHIC
RRTBHILNTED, T4bh, RIE T % Uy DAL L E, 2K 2,y€ T
PATRITNDI=HORMEL, (z,y)=1 THEHZLLEHTIIZLVWOTHS,

ik, TITHEHAWIENRI -TWS, Uss D EHCRREET My, & 0 ARTH
KKREL RBDOTHD, T,

Aut(Uss) >2- U6(2) > Mzz

EWVS 2MTRAAEMPRNZ B3, 2L, T ~DE|REL L TRE
<RB3bIT TRV, LIL, BADEL Lo LOMI T2 Ug(2)-orbit ZEHZ &
BTEDH, EOXED +1BEXEXTE = {+s|se T C Uss} EEHFTHIE, Zh
APUEICR o TV 5B, [HERBEL LTO rank 125 TH 3,

IOL REBELLT, Bl /F7ERRTIELTES, z,ye & N
ATHENZ-DOREE, (2,y) = -1 THHZLLEHETDIOTHS, *h
IX Meixner's graph & LTHOATWAR LD THD, 7o b, ZDgE (Uss) id (2-
Us(2),£) £V rank 5 DRBBRBMN 55D T, Fh# lattice IZHDIAR, £
Tgraph #EHT S, LWIHIFEL LTEMALTHLRL DI THS,

* * *

WThIZE X, ShTUg(2) BERT 2 22RaEME, 2-Us(2) BIEAT 56 K
FEMMBHE LN 72, Zhds, Fp DISRIEREND, Fiy > Cp,(d) = 2-Ug(2)
WS AESMELBELTHBONID TRV, EWVIDRRLOHBATH-
=DOTHB,

4 78-dim. representation of Fy,

8D Fyy O 718 RERBORRIY, ATLAS (b B Thd. T4, £Ih
HEREAL X5,

9, Hy={1,2,..,22} L%, ZdD22[#E LT Steiner system 5(3,6,22)
OWEEBZB (2HiBM), +5&, TOToy70lKIX77 @IR25DT,



Fh% Hl,Hz,...,H-n E#ET, Ba B2 18 RT~7 }‘/l’gﬂﬂ%, Zhoo
Ho, Hy, ..., Hip 2R REEE L TERINSI LD ELTEET S,

Qn = $ZOQH:‘
Ebiz, ZTI~ERAT S GL(78,Q) DITELTDOL 3 ILERT 5,

e H. — Hk (l € H[,)
=Y Heo —He (i € H)

Zhbix, fik 22 O elementary abelian group Z4£EM T 5. T HIZ,

(i € Ho={1,...,22})

Ho > %(_5H0+32Hk)

@= H, - :—G(Ho—'TH;— Z 3H, + Z Hk)

H,nHy=0 |HinH|=2

EEBETHhIE,

(ml,...,mzz, a) >2x Fzz

BREVADENIDTHS,

ZDTISEREFER%, lattice L FTNECFREEE L THERLIZL DM, TED Schroder’s
lattice CH D, DI

B.Schréder: Konstruktionen und Darstellungen der Fischer-Gruppe
Fig,, 1998 (Ph.D.thesis)

IZfE-> T, BEBOEREER~THI I,

EFPe=(1,1,.,1) € Q" £3<, KiZj ke {1,2,...77} TH;NH, =0 %

2 (le{5k})
(vieh =4 -2 (¢ {jk}and (HinH; =0o0r H;N H, = 1))
0 (otherwise)

IHHEMVT lattice L %
L := (m(e+v;;) | m € M, i, j:as above)y
&L, SHITRRNZENY L %

Lzs := {%(\/icoeo +) ciei) | coco+ Y cies € L}



EEET Do L 1D L 2E-12BRD VB LS REIE, i Uy ORBIERK
EDOLRCHETHB L BELNILLY, 0 lattice i1 even integral T, lattice &
LTDONRT A—FIT,

determinant =3, minimum norm =6, kissing number = 3294720

ERB, RR—VINZ, Lig DERITAIZHBITTHL, EBEITE, ReHEIIZB
THRHEBE (MAGMA) T, ZO£RTIEERS> ORELRDOTHS,
ET, IO lattice D H CRIBFEN

Aut([lm) =2 x Fgg : 2

EtRbhD, EDEMTIL, %D ATLAS THEXTH-obDERLTHS, &
L, EhiL Hy, ... Hp ZEDEIIZERBINICL B, LAL, ZZTREDH
MILERET B, E—27ET,

1(€ Hp) 2807w vy (2oifit2l ) 2 H,,..,Hy & LTEA
T,

EWSUIESITEARLTE I ), Ho b 1 28ATWH I EICERETH L, %iC
my L BWIHCRBOERNEET S, Thil,

R0 22 MDEEIZ ] fE, B0 56 BORE -1 {ETEATS

EWVWIBDTHB, ik, ZDO m, M Fpy BEHT S 3-transposition D& DT
HD, TD 2-Ug(2) LMBRPLMERED, m; OBRFTEMIZERT S, €2 T, m,
DOERZEME s =£1 ITHLT

ROLigDOW,:=(vERQ® Lz | my(v) =sv )r

EEBEBLTHEII), RI—VORTIE, —rAIEITEALZBALTHIHE, £TOE
HOTE: W, IZ8ERTWAHIS TH D, ThENRDOEFTZEM~D projection
m, EERL,

Lyg :=my(Lzs) Lse:=m_1(Lzs)
EB<,

* * *

CﬂB@ ng, Lsg 51"5. &OUJJ: '5 72 la.ttice ﬁsﬂj_c< 67-::6 57&’1 &b\ami’s
BaDEh BEETHB, THERICH Us(2),2- Ue(2) BERLTEY, KTl
22,78 Th D, BEILRAE Uy, Uzg EOMBRLTRHIFTE DLW IRTH S,
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(Basls of Schedder’s lattice) (HERNERUTAIR, 0 1/4 {§)
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5 HhiR

BTRFEL, RAOBIERREILODDIILIIT S, RePPESIRExR
'i. Lzz,Lss T&)én Ci’LB Ef*‘i integral lattice ‘:‘it{: 672'1‘0 %:—e, /l)fJ:
REBI/INABBEOLDETEZBXTHES &

L% = {zeln]|(z,2)eZ} L%:= {y € Lse | (v,9) € Z}
LTEZRT D, KMNEEM observation TH 5,

Lemma 1. (1) fE8®D z € Ly, 3L, /A (z,z) EFRERTHD. i,
[Lzz . L%] =2 ?5)60

(2) HERED 7 € Lgs ISXHL, /A (2,2) IB¥BHTH B, WIS, [Lsg: LE] =2
TH 5,

Ly DERFRIZ, 2EOERTINLELED 22 x 22 OFIOHE L EFRW
DT, FHETHERORE (1) 2HM1DEIENRTERES S, (2) 1, 2R
integral lattice THD I L6,

ERARIL L, Ly, OHARFHETHITES, FE, REFTOLEST
5o,

Proposition 2. 2L% = U,

TOWEIL, Ug(2) = 222 LW IRBERBLTWS, bHBA, TITit
Fo = Us(2) D BIIREND Fpy 2FEOHBRIZLTWSDITT, SFEDA R
7 bixizw,

* * x

BRAHMMEIL, L DI THD, RiT—F, Beizgvelisianvtni, 22
A5 sublattice & LT extremal lattice #BD I EMTELRWESLI L, ZD
KT Tit minimal norm = 6 &\ lattice 3 extremal T, ZhF Tiz/hMER
K (WEXKE) OB LELOREE—DflLBbh225THS. L2L, Th
i T8V D b7,

BEDOERLLT,
M55 = Ker(m) n L78

LB, Zhit Lsg @ sublattice THD, KDL I RHEIIL, FHRTIIKEX
ERSDENR, MAGMA 0 TERTWIH] L5 THs.

Lemma 3. det L56 = 2—22, det Mss = 222 & 7:‘: 69 ﬁ‘: M55 = L;G ?5)69
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FLT, 2D Mg B [RDBLD) Kol THD,
Proposition 4. Msgg = Usg.

iD= Lidevy, YHcHFEL TV boN, TOHRIYHTELETORTDH
3, TLT, ZORLLT (22< &Y sublattice & LTIL) extremal ~DBE
Btz Ths,

Corollary 5. L % L% O sublattice T, H*> unimodular L{RETHIL, L &
My 8%, #2T, FD minimal norm X { TH 5B,

6 {I&c

%oiﬁﬁk‘i, L-;s s Uzz,Uss &f’ﬁ6®?"itﬁ< <, Un,Uss bRy ) Ln &”56
TERTERVMNLEL, §0LZ5, HIBRATESOLIVERHLTVD, ¥
7o, Use tZBA L TH T & /= Soicher graph & Meixner graph {Z oW Tk, REKAR
YOYIY ATHRLGATVWS (F1 2EA{LMAERHBTY—7 vyrav),

¥, WEE, FEPF—EREEND (78 LWV IRTIL Es D Lie ROKTT
HB] LOEWHERITZ, EbhTHAEL-L BT, DI ki, BEFE (1999)
AKCORBABAER RO T LT, BEBRRLE Fy < 2E(2) £V 54
SBFEEBELTHWA LT, BRLTWR 2 EZEBRTILLVL BWVTH
5, FICLLS2WE, Eg 220 THhH-T, ZHbit Thompson BHAEAT S
248 KITD lattice MTFTET B, Th < Es(3) LW I BEMEIL, RVEZHLHATH
5, E; IZ2WT Y Harada D 133 KRR EWV IR L DIXTEET HDT
HEN, TORBLIQ LTRL, Q(WVE) LThHRLWIZLhbh, §DEIS
lattice DFEESITMOA TVWRWVWE D TH B,
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Another approach to the Stellmacher’s ©4-free Theorem

Makoto Hayashi
Aichi University of education

1. Introduction.

Stellmacher proved the following theorem:

Theorem [St]. Let S be a non-trivial finite 2-group. Then there is a non-trivial characteristic subgroup
W(S) of S which is normal in any finite group H satisfying the following conditions:

() S € Syla(H);

(II) H is 4-free;

(IT) Cy (O2(H)) < Oa(H); and

(IV) Every non-abelian simple section of H is isomorphic to $2(2™) or PSL,(3™) for some odd m.

The purpose of this note is to give the outline of another proof of this theorem.

Let C be the class of all embeddings (see [St]) (v, H) of S enjoying (II), (III), (IV) and (I') ST €
Syla(H).

Let (i, H;) € C for i = 1,2. (n, H,) and (73, H2) are equivalent, if there exists an isomorphism ¢
from H, to H; such that 7 ¢ = r2. Let [C] be the class of equivalence classes of C with respect to
this equivalence relation. By [St,1.2], [C] is finite. Let Q° = {(n,Ki);1 € ¢ < p} be the set of all
representatives of the class in [C]. Let G(C) be the amalgamated product of K,,---,K, over S. We
identify S, K),- -+, K, with their images. For a subset A of 1*, we denote by O2(A) the largest subgroup
of S that is normal in all the elements in A. Take |S| to be minimal such that 02(f2*) = 1. Then there
is a subset (1 = {H;;1 < i < n} of N1* satisfying the following conditions:

(V) H; is not 2-closed, and H; has a unique maximal subgroup containing S for all i;1 <i < n,

(VI) O2(2) =1, and O2(A) # 1 for any proper subset A of (2.

Notation: For X € @, we write Qx = O2(X) and Q% = O0*(X)[1S. For brevity, @; = Qu, and
Qi=Qy.1<i<n.

We assume further two hypothesis (which is not essential):

(H1) n > 3;

(H2) 0, Z2(Qy) < Qi forall H, K € 0.

2. On the digraph D(®).

(2.1) [ Z(Qx), 0*(H)) # 1 if and only if [ Z(Q}; (N Qx), O*(H)) # 1 for H € Q.

By minimality of |S| and 2, we have:

(2.2) There is no proper subgroup T of S such that either Q3 < T or T < H for all H € 1.

For a proper subset A of (1, we write Wp = Wp o = O3(A), and denote by W; = W; o the pre-image

of W(S/W;~1), i =1,2,--- which is normal in any elements of A that is normal in all the elements of A
except for the elements H of A such that [0%(H),W;] € S.

Furthermore, we can define the function fa from elements H of A to integers such that fa(H) =
min{i; O*(H)W;/W; = Ox g(HW,/W;)}.
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(2.3) Under the same notation as above, let i be an integer, and T' = {H € A; fa(H) =t}. If T is not
empty, then

(1) (] Qu =02(T), and QN Qu < O3(T) forall H € T.
Her

(2) If fa(H) < fa(K) for H,K € A, then Q} < Q-

We define the digraph D(®) whose vertices are all the elements of 2. Define the directed edge H — K
by H # K and Q}; £ Qx for H, K € Q. An H-K walk is the sequence H = Ho, H1,-++, H; = K, and
Hiy, — H; (1<i<t). If H=K,thenit is called a closed walk. If {H;;1 < i <t} is a proper subset
of N1, we call it a proper walk.

(24) If H — K, then fa(K) < fa(H), where A = {H, K}.

(2.5) For any H,K € D(®), there exists an H-K walk.

(2.6) For H,K € Q, if there is a proper closed H-K walk, then
(1) fa(H) = fa(K) for any A C Q that is non-empty and contains no element on the walk.
(2) If [0 2(Qx), O*(H)] # 1, then [, Z2(Qk), O*(K)] # 1. '

The definition of N*°(S) is given in the section 3. Since 02(1) = 1, by (3.1)(4) there exists K € 2
with N*°(S) € Qx«.

(2.7) Let H,K € Q such that [, Z2(Qy), 0*(H)] # 1 and N=(5) € Q. Then there is no proper
closed H-K walk.

(2.8) Let P be the shortest closed H-K walk. Then P has no cross point.

Renumbering if necessary, we may assume that Hy «— H; ¢— ... +#— H, «— H,. Moreover, we
may assume that there is m < n such that Q,Z(Qy) ¢ Z(H,), [ 2(Q.),0*(H:)] =1 (2 < i < m), and
N®(S) 4 Qm. Let V = 0, Z(Q1), and let V; = V7§, i = 2,3,---,m. Take m to be minimal among
them.

(2.9) Let Q4 = Q — {H;}. Then fa,(Hin) < fo,(Hiv2) £+ fa.(Hi-3) < fa,(Hi-1) (1 <i<n).

(2.10) Q;Q; Q7 =S foralli; 1 <i<n.

(2.11) Q; € Qi—z2 and [Vi,,0*(H,)]=1forall i;3<i<m.

(2.12) V; < Q; for all i;1 < i < m, and V,, is abelian.

(213) Cs(Vic1) € Qi for all i; 2 < i < m.

(2.14) Let i (2 < i < m) and H; = H;/Oaq-(H;). If H; is simple, then ,(5) < Cs(V;-1).

3. A characteristic subgroup of S.

Let ¢ be an integer. Let S be a finite 2-group, and V, T < S. Then we write V € u,(S,T)if Visa
T-invariant elementary abelian, and for any A < T with [V, A, A] = 1 there exist generators {v;;i € I}
of V which depends on A such that |[v;, A]| < 2¢ for alli € I. We write V € v(S,T) if V € (S, T) and
[[V,a]] > 2¢ for all a € A — Ca(V) with [V, A, A] = 1. Define v($,T) = Uu,(S,T)

¢

Define N_)(S) = 8, Ni(S) = {v(S,Ni_1(5))} (i = 0,1,---). We write N*(S) = n Ni(S) and
iodd
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Nao(S) = |J M)

teven

Note it is possible that (S, S) = 8 and N(S) = 1 (cf. (3.1)(5)).

(3.1) (1) Noo(S) is abelian.

(2) N=(S) = Cs(Nu(S)).

(3) No(S) S N3(S) S -+- S Noo(S) SN®(S) S+ SN (S) SN_(S) =S

(4) If N°(S) < T < S, then N(T) = N°=(S).

(5) If [21 2(Qx), O*(H)] # 1 for some H € 0, then 0, Z(Qx) € ¥(S, S), and hence 1 # N*(S) < Qy.

The following two results are from [H].

(3.2) Let p be an odd prime. Let H be a finite solvable group with H = Op,2(H), S € Syl2(H) and
V € (S, S) for some integer ¢. If V¥ is abelian, then V¥ € g, (S, S).

(3.3) Let H be a finite group, S € Sylz(H), V € p(S, S) for some integer ¢, and H= H/Oz(H)CH(V”).
Assume that H = E(H)S. Let {Ki;1 < i < 7} be the set of all components of H. Let m, =
112?2‘,_{1032 [Nz(K;)/C=(K:)|; A ranges over all the subgroups of S with [V¥,4,4] = 1}. Letm =1

ifm,=0and S # n Nz(K), and let m = m. otherwise. If V¥ is abelian, then V¥ € piy,.1m(S, S).

i=1

4. GF(2)H-module.

(4.1) Let H € Q, let D be a normal subgroup of S, and H = H/Qu. Let V be a faithful and
irreducible GF(2)H-module. Let A be an elementary abelian subgroup of S with [V, 4, A] = 0. Assume
that S = Q3D and 0, (E(H)NS) < D.

Then (1) |[V,Z]| > |Cv(D)| for all Z € 5.

(2) If H is solvable, then V = (v € V;|[v, 4| < 2) and [[V,Z]| > 2% forallT € 3.

(3) If H ~ Sz(2™), then |[V,Z)| > 2*™ for all T € §° and |V| > |Cv {1 (5)) 2.

(4) If H is solvable and |V/Cy(5)| < 2/2 . |Cv(35)|, then H is a dihedral group.

(5) If H is nonsolvable and O(H) # 1, then |A] < 2, [Cv(Z)] > 2° - ICv (1 (5))] and |(V,Z]| > 28 for
alze’'.

5. Proof of the theorem.

Let H € 1,V beanormal subgroupof H,and 1 =Wy < Uy < Wy < < W, €U,y = VH be a chain
of normal subgroups of H such that W;/U; is a non-central chief factor of H and [U;, 0*(H)] < Wi_,,

1<i<r+1. Define §(V) = min{H IW:/Ui,zll;x € S — Qu}-
i=1
(5.1) Fix i (1 <i < m). Let Z; = Cy, (O*(H,)) and choose m; as m in (3.3). Then
(a) [Vier/Zig1| 2 mi|Vif 24|
(b) &Vi) = |Vi/Zi].
() N>(S5) < Q..
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Now we return back to the Hypothesis (H.1) and have that n = 2 and V| £ Q.. However, we can easily
derive a contradiction in this case.
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1 Rl

POMEEW~S L Tprime graph (33172 RETH D Z L 335> T &, prime graph
DIERIE, ZLOWETEELREREZRLTWVWS, T prime graph X3 L BELRBE
FExbBZ LMo TWA, i, prime graph B—f{EEhED S 5 7 (generalized
prime graph) # AWV THOEHELXTRIRLBRINT VWD, TD/NXTHL. generalized
prime graph IZ-2V T %, prime graph & 17 & 5 2¥HFHBRILTH = & 2 REAT B,

2 Generalized prime graphs

ZORIZBWT, ZO/NXICHER generalized prime graph iIZOWTHOERE, E&ER
BB, GEHAMBEL L., PEHANERL TS, Sp 2 GO P-BaE2GoKLT
%, generalized prime graph ['p(G) & IXTARMBE V % P-HoBHOLEEH 5 REOHE
THY, pgeV BORMB-TAHDIE, pghdh 3 P-BABOMNEER~THLELTS,
prime graph {&, P % ¢yclic ¢3¢ BONBZ ST 7TH D, FlIAIT A ICBWWTP %27
RETHEL Ag 1. $21,2,3,4,5,6,10,12 DFEHAPNHINDTS T 7133 -2-50%
21223, FLHIZ P-BYEEZEXZOTIIRL, HO P-HoH#¥EXTTE 3E&KED
I77%Tp(G) TRIZLET D, ZONTEBVWTRFRIZODVWTRELREHEER
B, PEVD HBPHABETHAIRGERDge GIZRHWVWLIH b EL P-HISBTHD &
SRMERTH B, T0L S 2BROMERIL. Tk, FEE. TTRIEOMIC Th-BTHS

*iiyori@po.cc.yamaguchi-u.ac.jp
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Lin) Tf-BThdLd REELRLONHB, T generalized prime graph ['p(G)
LWL DBBERS E Cp THODTZ LIZT S,

& T generalized prime graph ['p(G) ISPV TROBHRABIEAGTH S,
()P BTHRED & & (a)iCp 12 6 AT ThH B, (B)(G) HELY 7 TR,
(2)P BAMED & & (a)iCp 12 1 ThB, (HLH(G) HELY T 7 TRV, &b
()P ST, KEHE, BEMCSV TR Tp(G) RA—07'5 714 3,

RO & %1 (2) O (o) REMBEOSEY RO THB ST, BEEZSELAL
ROTEEARSD>T 5, (1) DEEEIC VT bAEY AVRVERSLETHS LE
EEZTOBRMMULMETIRRNE 3 KBLTVS,

3 Generaliez prime graphs OGFAH)

I Z Tl T 5 43 generalized prime graph DRI OVWTHBRE LV, 16
ARBOTAHEDRHM-SITICET SMENH S, OB TEREL2ERL LTHlliCX
BROERIEFNTCHYVEERLDOTH D,

Theorem 1 G *HBB LT 5, GOMUEKEBIREOBE %2 71(G) & T3, EED(G)
DMBEE nIZWVW L THG S Hall m- B BEE DO LiIL. GHFETHIODLE
+o&iChHs,

CORRITRTO(G) PRAMER VWL THG A Hall BoafE b oI LERL
T38., EXoIEEREBTEIDTHoTRDEIICEHT - N T&B, “niiDu
DERTHSB,

Theorem 2 G 2HMREL T 5, COUBERIR¥OLE 2 7(G) LT3, FRD 2%
AL w(G) OWMARE mITHWLTHG A Hall m-B3BE L HOILIX, GRTRTHS
HDOLEFIRETH S,

Duil EDORGFL O BWARC 23 DO RGEEEXA TV AN PEITRIOTLED
TR Lz, RZEOHET22E8L LV IREIR2-TRTHI-DOLRETH-THR
p THREMRDLERDZERB IR D, #LL Kliyori]] 8Bz &, Zo liyori®
FEFAT genegralized prime graph BE&BHICHERAEIh T3,

BELLTIIZ D &S 2RI T 5 genegralized prime graph OB % BHT 35 =
LiL Y ARICBONBILORERSTS,

4 Burnside rings and generalized prime graphs

ZOREIZBVITHE, prime graph BIEHRR & OBEES—BILEINIZS T 7IZOVTHEL
ATHILEBRATS, ZZTOHEIE, EXRTONMBEEEDT L RAGy ¥ a vy Tl
ZETHD. MNIBITRLITEFLHDEITFETH D,
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FLO & 5 72 character theory DFEHFIFH BER DREREIZ character theory Z AW 5 &¥
% & & MBEOKME VDI character TRETI0EZEXNLS I, FIXIE, HiReERP
WOWTERT IR, ¥4 L7 M PHEREBT S L 5 Rcharacter ¥ EX BT LIk
B, T<NIFEL LT, IMEEOBB/HNET N D, V¥, generalized prime graphs
DREROBEREZZEL TV AL TH I, —BRER LD PHELBNLSN P 2—
RENDIBREFEORTREEZABZILTHASH, ¥ IFE XD L generalized prime graphs
ERBRER U 5 HkL LTEREIC & 5 generalized Burnside ring A5 & O BB HT
%, EBRIZ, LIz <7: IPRTREDOL EICr iz 1 THB, ] HIDBEXDERKRLE
TEZiIZLDES,

Theorem 3 G #HMBEL TD, b LT (G BHHEBTHNILIG 2 pgEiTp" 1 g
ZITqDp" ~DERIZ, BEITH D,

LATF. Burnside rings & generalized prime graphs & O BRIz SV THIBLIZBRAT 5,
FBETCFRETCROET LB HANER P 2LUTERXS !

HEK:P-B58%=>HnNK:P- a5

DL %S =8puU{G)Hhb#EbiD generalized Burnside ring Rp AR 4 DERA KT
%%, generalized prime graphs XM LM ABRILOMFREEX LD LIEBAD L
BTED, T 2MEFRIL, ROL D 2RI LA(G) CHEXD LN TES
LAp(G) = QHESP(G)Z[H] ZZT [H] HIZHE T3 ATHY %, [H][K] = [HnK]
for H K € Stk o TEETS. 2O LS IZEHET 5 & p, ¢ 25 generalized prime graphs T
WRTHBEMIEpe  w(H) qc (K),[H|[K] # (1] 2#@7T H K BEETHETH
B, ZORELAR(G) X HHZ group lattice V8L L7 b D THh B H3Fid generalized
Burnside ring # #4538 & LTEA TV S,

Lemma 1 eg = 1/|H NG| C,ec[H] for H € S TR EN D LAp(G) DS REKITE
#RIZ generalized Burnside ring Rp £ F—8T& 3,

Z OfEHH 5 generalized prime graphs i¥ generalized Burnside ring D& %2 R\ 5 4
DTHBI BN B,

5 SHRORE

RIDETRI- & 5 IZ generalized prime graphs & generalized Burnside ring (XD R
EFHOlattice 6 ¥ ) K HOIILTTCERIRBMOMKLIRBAD ZLNTETH B, Rid, &
To R 7R R BB TBE DO 1EM £ 5F-0 lattice 2> b generalized Burnside ring 7=\ 28125
b, ZORE lattice DE¥DL S REHERB LI LD THINHAT S LIELH
DYER. generalized prime graphs & generalized Burnside ring B3Iz & > TRKETH
2RI,
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A Characterization of a Finite Simple Group
by Orders of its Solvable Subgroups

Abe, Seiichi
June 17th 2000

Abstract

A brand new way to characterize a finite simple group is discovered.
Some infinite series of non abelian simple groups have turned out to
be determined just by each set of orders of solvable subgroups. It is
quite obvious to see that the set of orders of solvable subgroups of the
alternating group As of degree 5 is {1, 2, 3,4, 5,6, 10,12}. But it is not
very easy to see that no other rion abelian simple group has such a set
as mentioned one. In this paper we will try to answer the question
above for any finite simple group and suceeded to do that for some
infinite series of non abelian simple groups.

1 Introduction

Five kinds of infinite series of finite simple groups A,(q), 2B2(q), *D(q),
'G2(q) 2G2(g) and 26 sporadic simple groups are shown to be determined
just by each set of orders of solvable subgroups as described in the main
theorem as follows.

Theorem 1 Let S be a non abelian finite simple group which is isomorphic
to one of

Ai(9), Sz(a), *Ds(9), Gz(q), *Ga()-

or 26 sporadic simple groups and G be a finite group. If ord(S;a(S)) coinsides
with ord(S,01(G)), then G is isomorphic to S.

We can regard this theorem as a kind of characterization of non abelian
finite simple group by a set of integers which is determined by two abstract
parameter “taking order” and “being solvable”. The origin of this consider-
ation is Thompson conjecture and its related problems shown as below.



Conjecture 1 (J. G. Thompson) Let G be a finite group and S be a non
abelian simple group. N(G) stands for the set of sizes of conjugacy classes.
If N(G) coinsides with N(S), then G is isomorphic to S.

Problem 1 Let G be a finite group and S be a non abelian finite group.
M(G) stands for the set of orders of all elements of G. Suppose M(G)
coinsides with M(S), then G is isomorphic to S.

It is clear that the set N(G) is a set of integers which is determined by
two abstract parameters “index” and “realized as a centralizer of an element”
and that M(G) is determined by “order” and “cyclic”. These problems are
solved in some cases using prime graphs which we regard a graph determined
by the set of orders of cyclic subgroups or by the set of indices of centralizers
of each element of a group in question. Now it seems natural to try to
seek new couples of parameters instead of “order and cyclic” in order to get
another set of integers which would reflect the properties of the group more
clearly. Therefore we are going to show an outline of the generalization of
prime graphs with some examples, paraphrase of Thompson conjecture and
that of the related problems in the same way as the generalization of the
prime graphs and known results of these problems . We will also show a
generalized Thompson conjecture of which every problem mentioned above
would be regarded as a special case. See[l] to go more in detail about this
generalization and properties of generalized prime graphs. So we start with
a definition of A-graph for an arbitrary set of integers A.

Definition 1 For a set A of natural numbers, I' = 'y denotes the A-graph
where the set V of vertices of I is defined as follows

V =Vz = {p: prime| pla for a € A}.

Two vertices p and q are joined to each other in T's if and only if there ezists
an element of A which can be divided by p X q.

= stands for a group theoretical property. We can consider a lot of =’s
like being nilpotent, abelian, cyclic, maximal subgroup of a group and so on.
We put
S=(G) := {H C G|H is a E—subgroup of G},
and let p be a mapping of Sz(G) to N, that is,

p: S_:_(G) — N
(H — p(H)).



In this paper we are going to consider the following two mappings:
ord(H) = |H|, ind(H) = |G : H|.

Now note that the image p(Sz(G)) of p is a set of natural numbers and
can be regarded as A. So we can define the p(Sz(G))-graph for this set. We
call it the (p, Z)-gragh of G or simply the =-graph of G. It can be denoted
by

Tyszte) = To2)(G) = T=(G).

According to the rules above, we can regard the prime gragh I'(G) as a
kind of (p,Z)-gragh where p is ord and = stands for cyclic, which is denoted
by I yse(c)) - So a prime graph I'(G) can sometimes be called an (ord, cyclic)-
graph or simply a cyclic-graph, which are denoted by I'iord,cye)(G), [ yeG
respectively.

Let us see some concrete examples of (p, =)-graphs.

2, 3 2 3
11 °7 11 7
l--‘(ctrd.t:y,n:) ( M. 22) l--‘(ord..wt) (M 22)

The existence of the edge between 2 and 3 in I'igra,s01(M22) tells us that
M3>, has a solvable subgroup whose order can be divided by 2 x 3. The rest
of edges of this graph give us similar informations.

2 3

==
11 7
l--‘(im'l,rmz.::)(M22)

Now we can see Thompson conjecture from a higher place. At this point,
we are able to rewrite the conjecture and related problems as follows. We
let that =, stands for “cyclic” and that a subgroup H of G is said to be a
Za-group if H is realized as a centralzer of some elements of G. From now,
we will suppose that G is a finite group and S is a non abelian finite simple
group.
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Problem 2 (Thompson) Let Z(G) = 1.
If ind(8z,(S)) coincides with ind(Sz,(G)), then S is isomorphic to G.

This problem is solved for some group S. The following theorem is one
of the answers.

Theorem 2 (Cheng) Let ind(Sz,(S)) coincides with ind(S=,(G)). If the
number of connected components of (ord, cyc)-graph T(ord,cye)(S) of G is greater
than or equal to 3, then S 1s isomorphic to G.

Problem 3 If ord(Sz,(S)) coincides with ord(Sz, (G)), then S is isomorphic
toG.

An answer to the question above for two infinite series of non abelian
simple groups is the following theorem.

Theorem 3 (Shi-Deng) Let S is isomorphic to Sz(q) or PSL2(q)(g # 9).
If ord(Scyc(S)) coincides with ord(Sqc(G)), then S is isomorphic to G.

Now we have come to the level to generalize all these problems as follows.

Problem 4 (Abe-liyori) For which pair (p,Z), does the fact p(S=(S)) =
p(S=(G)) imply that G is isomorphic to S?

We get the main theorem as an answer to the question which is discribed
as the following problem.

Problem 5 Let S be a non abelian simple group and G be a finite group. If
ord(S,a(S)) coinsides with ord(S;u(G)), then is G isomorphic to S ?

2 GKS-series and Regular Primes

We already have several theorems which stand for properties of a solvable
graphs. See Abe-liyori[1]. But it is not enough to see such theorems in order
to investigate the structure of a group. Now we need propositions that would
combine the properties of a solvable graph and the structure of the group
like the following lemmas.

Lemma 1 [1] Let G be a group, H a subgroup of G and N a normal subgroup
of G.

(1) If p and q are not joined in Tora,s01)(G) for p,q € n(H), then p and g are
not joined in I‘(o.-d,,d) (H)

(2) For p € #(N) and g € n(G) — w(N), p and q are joined in T (ord,sat)(G)-
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(3) If p and q are not in Lo eon(G) for p,q € w(G/N), then p and q are not
joined in T(org 501y (G/N).

Lemma 2 (1] Let G be a finite group and p and q be members of 7(G) which
are not joined in T'gra s01)(G) if and only if there exists a series of normal
subgroups of G ‘

such that G/N and M are {p,q} —groups and N/M is a non abelian simple
group such that p and g are not joined in o sty (N/M).

We call the series (*) of normal subgroups of G a GKS-series and also
call the situation in the lemma that p and g are expressed to be disjoined by
a GKS-series (*).

In order to get deeper information about the structure of G. We need
GKS-series that hold every pair of primes of 7(G). So we are going to pay
special attention to a prime that is joined to any primes of the graph. We
call such a prime a regular prime.

Definition 2 Let p be a vertez of the I'(,=)(G) for a group G. p is said to
be regular if and only if p is joined to any other vertices in the graph.

We denote the set of regular primes by Reg,=)(G). Following lemmas
tell us that the number of Regoq,501)(G) is closely related to the structure of
G.

For example, 2, 3 and 5 are regular primes in I'(jnd,mazy(M22), and we can
see that each of I'(grd,qc)(M22) and T'ora 401y (M22) has no regular primes. that
s,

Reg(ind.maz)(Mn) = {27 5}r and
Regord,cye) (M22) = Regorg sty (Mz2) = 0.

Lemma 3 If Regyq504(G) = @, then G is a non abelian simple group.

For a graph I, I'“ is said to be a complementary graph if and only if the
set of vertices of I' and I'® coinside with each other and two vertices p and ¢
of I'® are joined in I'® if and only if p and ¢ are not joined in T.

Let A be a set of positive integers and Ag be its subset. Note that [’y — Ay
stands for a subgraph of Iy whose vertices set is A — Ag. Any two members
p and q of A — A are joined in 'y — Ag if p and ¢ are joined in Ty.



Lemma 4 If the number of connected components of

I™(G) = (Tord,sat) (G) — Regord sty (G))°

equals n, then at most n GKS-series of G is neccessary to express any pair
of vertices of T'(ord s0ty(G) to be disjoined.
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p-adic Properties of the Frobenius Numbers of
Symmetric Groups

Yugen Takegahara (?7 4R $#47T)
Muroran Institute of Technology (ZM LHX%E)

1 Introduction

Let A be a finitely generated group, and let h,(A) be the number of homomor-
phisms from A to the symmetric group S, on n letters. Put hg(A) = 1. Define

Ea(X) = Z il j4)
XM:B|
X) = 4. o
‘PA( |A§m |A X Bl

where the summation 37, 5., runs over all subgroups B of finite index |4 : B| in
A. In [14], Wohlfahrt proved that

EA(X) = exp(pa(X))- (1)

Let p be a prime, and let Cy be a cyclic group of order p'. We have

. InfAl nl
(Co)=Hz € Sule? =1} = ;0 il =

which yields the formula (1) in the case where A =C, :

XP
Ec,(X) =exp (X + ?) .
This formula is equivalent to the recurrence formula

(G = hat(G3) + 2= 1;. +(Gy)

(See also [3, 14].) The formal power series Ec,(X) arises from another situation as
well. Let I', denote Morita p-adic gamma function [13, VII, 1.1] [9, pp. 88-91], and

- e = (2)

k>0



be the Mahler series of ', [13, IV, 2.3]. Then its coefficients satisfy the following
identity [13, VII, 1.4]:

XE 1-Xr XP
(-1)** g — = ——exp (X + —) .
g k! 1-X P
The property of hy(C;) is known as Wilson’s Theorem :

hy(Cp) =1+ (p—1)! =0 mod p.
The following theorem is due to Frobenius (see [7, Theorem 9.1.1]).

Frobenius Theorem The number of elements z in a finite group G that satisfy the
equation z% = 1 is a multiple of ged(d, |G|).

Frobenius Theorem implies that, for all n > p,
hn(Cp) = 0 mod p.

For each real number z, [z] denotes the largest integer not exceeding z, and, for each
nonzero integer z, ord,(x) denotes the exponent of p in the decomposition of z into
prime factors. Using the preceding recurrence formula, Chowla, Herstein, and Moore
proved that ord;(ha(C2)) 2 [(n+2)/4](= [n/2]—[n/4]) [2, Theorem 10]. Furthermore,
it was proved in [4, 5, 6, 10] that

n n
ord Gl 2 |—-| - —].
J(ha@) 2 [2] - |5
Ezemple 1.1 ([4, 10, 11]) Suppose that p = 2. Then
[g] - [;] +1 ifn=3mod{4,
ordz(ha(C?)) = . n
[5] - [Z] otherwise,
Ezample 1.2 ([4, 11]) Suppose that p = 3. Then

ord;(hn(C3)) > 3] - gw +3 if n=24mod 27,

m

+2 ifn= 6 mod 27 or if n =15 mod 27,

ord;(hn(Cy)) = +1 ifn= 4mod 9orifn= 7mod 9,

otherwise.

IENEEIE

[
CERENIE

\

In this paper, we will give some properties of hn(Cpt X Cpm), where | and m are
integers with I > m > 0.
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2 Cyclic groups
Let I be a nonnegative integer. It follows from the formula (1) that
Ec,(X)= (kz_; -—X”)

The p-adic power series

k=0
is called the Artin-Hasse exponential. The important property of Ep(X) is that

Ey(X) € Zy[|X]] (2)

(see [13, VII, 2.2] and [9, p. 93]), where Z, is the ring of p-adic integers. Frobenius
Theorem yields this property (see Section 5). The property (2) plays an important
role in the proof of the following theorem. For each nonnegative integer n, put

-3 [3]

E,(X) = exp (Z pl—*xp‘)

if 1 > 1, and fi(n) =

Theorem 2.1 ([10]) Let y, = [n/p'*!] for each nonnegative integer n. Then
ordy(hn(Cyr)) 2 f3(n) = lym,

and equality holds for each n with n = 0 mod p't!. Furthermore,

o (e
hﬂ(Cp') = p(l+l)y"yn!(n - pH-lyn

)lh"-P‘“y.. (Cp) mod pfﬁ(")-lyn+l+1.

For a nonnegative integer n = ng +mp + ngp? + - - with ng,n;,n,, ... are non-
negative integers less than p,

ordy(n!) = =

00
=7 — N —Ng — -~ n
p—1

Furthermore, we have

n! .
ord, (m) = fo(n) = ltm,

where y, = [n/p"*!]. Also, by (2), hn_p+y,(Cp)/(n — p"*'y)! € Z,. Hence the
second assertion of Theorem 2.1 yields the first one.
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Corollary 2.2 ([10]) The p-adic power series Ec,(X) converges only in the open
disc of radius r = p°™9%(r) where

_r b

(-1 p*
Remark 2.3 The Artin-Hasse exponential E,(X) converges only in the open disc of
radius 1.

ordp(r) = —

Let Zp(X) denote the set of formal power series with Z,-coefficients which tend
to 0. Take a formal power series f(X) = Y72, f;X? € Z,[[X]]. For a positive integer
ki, let fmoapr(X) = 3522, fiX7, where f; = f;p*Z, € Z,/p*Z,. By the definition of
Z,(X), the following conditions are equivalent:

(1) £(X) € Zo(X);

(2) for any positive integer k, f moap+(X) is a polynomial in X with Z,/p*Z, coef-
ficient;

(3) f(X) converges for |z|, < 1.

Let r be an integer with 0 < r < p"*!. Recently K. Conrad proved the following
theorems.

Theorem 2.4 Ifl(p— 1) > 2, then there ezists some f(X) € Zp(X) such that

hy+1y4:(C I+1)y
i )=(;‘,,,,—y*+(,’;'—!)(—p eyt

for each nonnegative integer y. If p = 2 and | = 1, then there exists some g(X) €
Z,{X) such that
( ) _ h4y+r(02)4yy!

T (dy+r)!
for each nonnegative integer y.

Theorem 2.5 Iford,(h.(Cp))—fi(r) < I+1 and if either ordy(h(Cp))—f5(r) # I+1

or
G w14r(C
ord, (':,&l:‘!) + h(’;H;‘ i r')"!)) #0,

then
ordp(hp+144-(Cpt)) = f;(p'“y) — ly + ordy(h,(Cy))

for each nonnegative integer y. If ord,(h.(Cp)) — fi(r) =1 +1 and if

he(C, hpts14+(Cpt)
orgy (2%2) 1 TSl <o
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then there exists a € Zp — {0} such that
ordp(hyitigsr (Cp)) = f(p™'y) — Iy + ordp(he(Cyr)) + ordp(y — )

for each nonnegative integer y.
For Theorem 2.5, see also [10, 11].

3 The direct product of two cyclic groups

Hereafter, let P = Cp X Cym, where | and m are integers with [ > m > 0. Let
G be a finite group, and let G™ be the direct product of n copies of G. The wreath
product G1.S,, is the semidirect product of G™ and S,; the product of two elements
of G 8, is defined by

(gh 92y-.- )gn)a : (9'1)9'2) cee )g:.)T = (919;-1(1),929,',-1(2)a i ,g,.g:,_,(n))a'r.

Let d be a nonnegative integer. We denote by Cjy a cyclic group of order d. Define
h(Cs4,G) = {z € G|z% = 1} and h,(Cs;G) = h(C4,G 1 S,) = {z € G1 Splz? = 1}.

For a permutation o € S, that factorizes i disjoint cycles of order p*!, the cen-
tralizer of & in S, is isomorphic to (Cp+1 15;) X Sy_pi+1; (see [8, 4.1.19]). Hence

Yn n'

hn(Cptr X Cpm) = Z p(“'l)"i!(n.— p‘+li)!hi(Cpm; Cp+1)ha_prri(P), (3)
i=0

where n!/(p*+Vii!(n — p*+14)}) is the number of permutations that factorize ¢ distinct
cycles of order p'*! in S, (see [8, 1.2.15]). Define

Ec,(X;G) = 2_‘; L
The formula (3) is expressed as the following.
Theorem 3.1 We have
Ec ,,1xCpm(X) = Ep(X)Eg,m (X7 Cpur).

Let {dp,d, ...} be the set consisting of all divisors of d. We obtain

mCiG) = Y = TTIGI4Yh(Cy, G
jodo+srdy+o=n [Tkpo di' 4! k20 4
.y _l6Pn 1y MOys. Y 4)
G

R
Jodo+i1d1+-=n HkZO dl’: Tk k>0



where the summation runs over all sequences (jo, /i, - . .) of nonnegative integers with
Jodo + j1dy + -+ - = n (see also 8, 4.2.10]).

Let 6 = 1 if either p > 2 or m = 0, and § = 0 otherwise. By using (4), we have
the following.

Lemma 3.2 For positive integers e and i, if e > m, then
hi(Cpm; Cpe) = p™ mod p™i+e-m-1+4,
and ord, (hi(Cpm; Cpe)) > mi.
To get the properties of h,(P), we use the following theorem due to Yoshida [15].

Yoshida’s Theorem The number of homomorphisms from a finite abeliaﬁ group A
to a finite group G is a multiple of ged(|A|, |GI).

In the case where A is cyclic, this theorem is Frobenius Theorem.
If n < p'*!, then the order of each cycle in S, is less than p*!. Hence Yoshida’s
Theorem yields the following.

Lemma 3.3 Ifn < p'*, then hy(P) = hn(Cp+u X Cpm) for any nonnegative integer

u, and
ord, (h,,('P ) >0.
nl

By using the formula (3), Lemmas 3.2 and 3.3, we can prove the following general-
ization of Theorem 2.1.

Theorem 3.4 ([10]) Let y, = [n/p't!] for each nonnegative integer n. Then
ordy (A (P)) 2 fp(n) — (I — m)yn,

and, excepting the case where p = 2 and [ = m > 1, equality holds for each n with
n = 0 mod p'*'. Furthermore,

(-1)¥~n!

ha(P) = p(l-m+l)yny,,!(n — pHtiy,)!

hn—pl“y,. ( P) mod p]{,(n)—(l—m)yn+l-m+6_

4 p-adic properties

We will give a generalization of Theorem 2.4. For each positive integer ¢, Theorem
3.1 yields

Ec jyuxcym(X) = Ep(X) fI Ecyn (XP™ Cpain). (5)

=0
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Let r be an integer with 0 < r < p'*!. By the equations (4) and (5), we obtain

hpﬂ+lJ+f(Cpl+n X C,,m) Z hpl+ly+,.(P)
(p'+1j+r)! Py +r)!
u-1m (Pm —k\j

X Z H H (pk+l+:+l YA

n:ﬂ E.m Jepit=j—y t=0 k=0

y=0

(6)

Here Lemma 3.3 implies that, for a sufficiently large u,

hpl+lj+r(Cpl+n X Cpm) _ h’l+1j+r(Cpl+u+l X Cpm) _ ..
@i+t (p+lg + )t o

and this is p-adic integer which we denote by ¢™ (p/*'j + r). By the equation (6),
we conclude that

o . +00 m —k "
;c(m)(l"“j +1)X = (Z (,;lf:l?;(z) ) HHexp (pk+l+:+1 X? ) - (7

y=0 i=0 k=0

Definition 4.1 For each integer z, let (z), = Z;;;p’ ifx >1,and (z), =0
otherwise. Define a sequence of rational number b(0), 5(1),5(2),. .. by

i bsz_?)xn = exp (_ i (m + l)p;;’*.(lm - i)v(_pl-m+l)p‘xp") .

n=0 =0

The formula (7) implies that

i hpl+ly+r(P) (_pl—m+l)yxy

Sty +r) -
o0 8
= (J§=o: c(m)(pl+1j + r)(_pl-m+l)jxj) Zn=o bf::) .

The formula (8) yields the following.

Lemma 4.2 We have

hp"“y+r(P)
(p'*'y +1)!

( l-m+1)yyl JZuc(m)(leJ_*_r)( pl-m+l)J(y J)' (y J)

for each nonnegative integer y.

K. Conrad introduced these methods in the case where m = 0.
The main theorem is the following.



Theorem 4.3 Assume that (I-m)(p—1) > 2. Ifp = 2, assume that either | > m+3,
or else m = 0. Then there erists some f(X) € Z,(X) such that

_ hpz+1”+,.(Cpx X Cpm

o) = Mt ) myey

for each nonnegative integer y.
The following proposition, together with Lemma 4.2, yields Theorem 4.3.

Proposition 4.4 Under the assumption of Theorem 4.2, there ezists some b(X) €
Z,{X) such that b(y) = b(y) for each nonnegative integer y.

5 The Wohlfahrt formula

It is easy to show that the number mp(p*) of subgroups of order p* in P is given
by
(k+1)p ifo<k<m,
mp(p*) ={ (m+1), ifm<k<l,
(+m—k+1), ifi<k<i+m.

Hence

m-1 { +00
(PP(X)= Z (k-;l)pxpn_’_z(m;l)pxph_*_ Z (l+m;k+l)pxpn.
k=—00 k=m k=l+1

We will explain Theorem 3.1, Lemma 3.3, and the formula (8) by using the
Wohlfahrt formula
Ep(X) = exp(pp(X))-

The formula (4) yields the following.
Theorem 5.1 ([1, 12]) Let d be a positive integer, and let {do,dy,...} be the set
consisting of all divisors of d. For any finite group G,
h(CdlduG) dy
Ec,(X;G) =exp (g}; iClds X% ).

First, using this theorem, we have

Hm+l emi1-k "
Ec, 1y xcm(X) = Ep(X)exp Z X

k=l+1
= EP(X)ECpm (XP‘H;CPIH).



This proves Theorem 3.1. Next, the p-adic power series

E("')(X)—exp(z (k+1)Pxp Z(”H'l pxp)

k=—o0

has p-adic integer coefficients (see also [9, p. 97, Exercise 18]). This fact is equivalent
to Lemma 3.3, because

[=.+]
Ef™(X) =) d™(n)X".
n=0
In particular, Frobenius Theorem yields E,(X) € Z[[X]|. Finally, the Wohlfahrt
formula implies that

£ = B 0 (-5 O 2= Do)
i=0

This fact yields (8).
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ON IMPRIMITIVE BLOCKS OF A QUASI-THIN
ASSOCIATION SCHEME

MITSUGU HIRASAKA AND MIKAHIL MUZYCHUK

ABSTRACT. Let (X, R) be an association scheme in the sense of
P.H. Zieschang where X is a finite set and Ris a partition of X x X,
We say that (X, R) is quasi-thin il each element of R is of valency
at most two. Assume now that (X, R) is a quasi-thin scheme with
[X| = 4p where p is a prime number. The summarized version of
our results is the following: If the automorphism group of (X, R)
is intransitive, then p= 7.

1. INTRODUCTION

In [5] we started to investigate directed graphs of valency two which
could be a relation of an association scheme, and proved that a quasi-
thin scheme has an automorphism group acting transitively on each
equivalence class induced by its thin residue (see Section 2). We noted
here that each thin closed subset can be identified with a finite group
(see [7]). Since the quotient over the thin residue is thin, it must be
important to consider a way to extend the equivalence classes induced
by the thin residue to the whole with the aid of a finite group. The
authors were trying to get the affirmative answer for the statement
that each quasi-thin scheme has a transitive automorphism group. The
authors believed that the above statement is true for general quasi-thin
schemes. But, it was in February of 2000 when the authors received an
e-mail jfrom A. Hanaki to inform the existence of a quasi-thin scheme
whose automorphism group is intransitive. The example was found on
the way to classify association schemes with 28 points.

Theorem 1.1 (A. Hanaki, I. Miyamoto). The No.176 listed in
http://kissme.shinshu-u.ac.jp/as/data/as28

is a quasi-thin association scheme whose automorphism group is in-
transitive.

This result gave the authors a huge impact and inspired them so
much. In this paper we deal with quasi-thin closed subsets, and obtain
that each quasi-thin scheme with 4p points has a transitive automor-
phism group except of the scheme given in Theorem 1.1 where p is a

Date: August 28, 2000.

As descried in Introduction, this paper owes much to be motivated to proceed
further by the communication with Hanaki and Miyamaoto. The authors would
like to express the deepest gratitude to them.
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prime number (see Theorem 4.1). Theorem 4.1 was motivated from
the enumeration by A. Hanaki and I. Miyamoto, and obtained as a
corollary of the following results: Lemma 3.1; Proposition 3.3; Propo-
siotion 3.5; Proposition 3.4.

2. PRELIMINARIES

Following [7] we give the notation about association schemes. Let X
be a finite set. We shall denote the diagonal relation of X x X by 1x.
Given r C X x X and z € X, we set

r*i={(z,y)| (y,z) €7} and 2" :={y € X|(z,9) € r}.
Let R be a partition of X x X which does not contain the empty set.
We say that (X, R) is an association scheme (or simply, a scheme) if
it satisfies the following conditions:
(i) 1x € R;
(ii) For each r € R we have r* € R;
(iii) For all d, e, f € R and each (z,y) € f, |z Ny*"| depends only on
d, e, f where we denote the cardinality of any finite set Q by |Q|.
We denote |z¢ Ny*’| with (z,y) € f by auy, and {ag| d,e, f € R}
are called the intersection numbers of R. For each r € R we abbreviate
N, = Qrpepy,, which is called the valency of r. For each (z,y) € X x X
we denote the unique element of R which contains (z,y) by r(z,y).
For each F C R we set

npi=Y ny, Fr=\]f, F:={f|f€F}and F*:= F- {Ix}.
JeF JeF

Given z € X we shall write zF instead of zF*.
Following [7], we shall write the power set of R as P(R), and we
define the complex product P(R) x P(R) —+ P(R) by

EF:={reR| ZGGE Z,epa,,, #0} forall E, F C R.
One may notice that, for each z € X we have
EF = {r(z,y) |z € ¥,y € 2F}

and the associativity of the complex product holds. For convenience
we shall write eF and Fe instead of {e}F and F{e} respectively where
e€ R, FCR.

A subset F C R is called closed if FF* C F, or, equivalently, F* is
an equivalence relation on X. We shall denote by C(R) the set of all
closed subsets of R, and write E < F if EC F and E, F € C(R). For
each E C R we set (E) :=[{F € C(R) | E C F}, so that (E) is the
unique minimal closed subset which contains E since the intersection
of closed subsets is also closed.

Following [7], for each F € C(R) and z € X we set

(X, R)gr := (zF, {for}ser), for=fN (zF x zF).
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Then (X, R).r is an association scheme, which is called the subscheme
of (X, R) with respect to (F,z). We set

X/F:={zF|z € X}and RJF := {rF|r € R}

where rf := {(yF, zF)| z € y*"F}. Then (X, R)F := (X/F, R/ F) is an
association scheme, which is called the factor scheme of (X, R) over F.

We say that F € C(R) is thin (res. quasi-thin)ifn; =1 (res. ny < 2)
for each f € F. For each F € C(R) we set

O4(F) := (E|E < F is thin), O°(F):=({E < F|FJE is thin},

which are called the thin radical and the thin residue of F respectively.
One may notice that Oy(F) is the unique maximal thin closed subset
of F and O%(F) is the unique minimal closed subset E of F such that
F/ E is thin, furthermore O°(F) = (ff*|f € F) (see [7, p. 37]).
Let FEC(R) and z, y € X. A map o : 2F = yF is called arrangec
with respect to (F, z,y) if it satisfies the following conditions:
(i) o is a bijection with o(z) = y;
(ii) For all w, z € zF we have r(o(w),o(2)) = r(w, 2).
We say that F' € C(R) is arranged if, for all z, y € X there exists an
arranged map with respect to (F, z,y).
The following lemma is proved in [4]:

Lemma 2.1 ([4]). Let (X, R) be an association scheme. Then the fol-
lowing are equivalent:

(i) Aut(X, R) is transitive on X;
(ii) Each closed subset of R is arranged;
(iii) R is arranged.

3. MAIN RESULTS

We shall show our main results without proofs in this section.

Lemma 3.1. Let (X, R) be an association scheme. If E < R is ar-
ranged and T < O4(R) with ET € C(R), then ET is arranged. In
particular, each thin closed subset is arranged.

Proposition 3.2. If F € C(R) is quasi-thin with Og(F) = {1x}, then
F is arranged.

Proposition 3.3. If ngs(r) = 2, then F is arranged.

Proposition 3.4. If F is quasi-thin end F = (f) with (s;) = (s;-),
then F is arranged.

Proposition 3.5. Assume that O°(F) = Oy(F) with ngory = 4.
Then np/4 € {3,7,4,6,9, 16}.
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4, SOME APPLICATION

We shall apply the results given in Section 3 for the characterization
of quasi-thin schemes with some restriction on the cardinality of the
point set.

Theorem 4.1. Let (X, R) be a quasi-thin scheme with | X| = 4p where
p is a prime number. Then one of the following holds:

(i) Aut(X, R) is transitive on X;

(ii) |.X| = 28, O%(R) = O4(R) and Roe(r)y = 4.

Proof. We may assume that p # 2 since the classification of association
schemes with 8 points are done in [6]. We divide our consideration into
the cases up to the valency of nps(g), i.e., the set of divisor of 4p,

noer) € {1,2,4,p,2p, 4p}.

Case 1. (nger) = 1, 4p) It is proved in [5] that each quasi-thin
scheme whose thin residue is trivial has a transitive automorphism
group.

Case 2. (noe(ry = p) Since nos(n) is an odd prime, the conclusion
follows from Lemma 3.1 and Proposition 3.2.

Case 3. (nos(r) = 2) It is 2 direct consequence of Lemma 3.3.

Case 4. (nge(ry = 4) If O%(R) is thin, then, by Proposition 3.5
we have |X|/4 = npf4 € {3,7}. The conclusion follows from the
classification results in [3].

If O%(R) is non-thin, then O°(R) = (s;) for some f € R withn; = 2.
Since s, is a unique non-thin element in O%(R), we have ff* = f*f. It
is clear that R = (f) by f ¢ O%(R). Therefore, the conclusion follows
from Proposition 3.4.

Case 5. (nge(r) = 2p) If R = (f) for some f € R, then (s;) = (s;.)
since there is a unique closed subset for each divisor of 2p and n(, y =
N(s,.)- Thus, the conclusion follows ;from Proposition 3.4. Assume that
there is no f € R such that R = (f). If there exists g € R — O%(R)
such that n,y = p, then ny; = 2p, and hence Og(R) > Og((g)). This
implies that R = (s,)O4( R), which is arranged by Lemma 3.1. Hence
we may assume that each element f € R — O°(R) satisfies n, ) = 2.
Take an element h € O°(R) with n(,,) = p. Then there exist gi,
g2 € R — O°(R) such that h € g,g,. It follows that s, = s4- € Og(R),
contradicting n(,,) = p since s, is symmetric. Thus, it is impossible
that there is no f € Rsuch that R = (f). This completes the proof. O

According to the classification result by A. Hanaki and I. Miyamoto
there exists exactly two quasi-thin schemes which satisfies the proper-
ties as in (ii) of Theorem 4.1, one of which has a transitive automor-
phism group but another of which does not have it. This implies that
each quasi-thin scheme except one case has a transitive automorphism

group.
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An upper bound for the cardinality of an s-distance
set in Euclidean space

Etsuko Bannai
and
Kazuki Kawasaki

Graduate School of Mathematics
Kyushu University

Abstract

In this paper we show that if X is an s-distance set in R™ and X is on p concentric

spheres then [X| < E?EEI m+:——-' ).

1 Introduction

A subset X in a metric space (M, d) is called an s-distance set if the cardinality of the set
A={d(z,y) | z,y € X, = # y} is equal to s. In [5] P. Delsarte, J. M. Geothals and J. J.
Seidel showed that the cardinality of a spherical 2s-design X on the sphere S™! (C R™)

is bounded below by (""""l) + (’";"’l' 2) They named the spherical 2s-design with the

smallest cardinality (’"“") + (’""'"2) tight 2s-design. In the same paper they showed
that the cardinality of an s-distance set on the sphere S™~! is bounded above by the
same number ("”'"l) + ('""'"2) They also showed that a finite set on the sphere §™~!

s 5-1

of cardinality | X| = ('""""1) + (""“ 2) is a tight 2s-design if and only if it is an s-distance
set.
The upper bound of the cardinality of an s-distance set in R™ was studied by Bannai-
Bannai-Stanton [2] and Blokhuis [3] independently. They showed that s-distance set in
R™ is bounded above by (’":"). On the other hand Euclidean design is defined in the
paper by P. Delsarte and J. J. Seidel [4]. They proved that Euclidean 2s-design on p
concentric spheres in R™ is bounded below by 325! (""";_‘“'1

In this paper we prove the following theorem which improves the upper bound of an
s-distance set in R™.

Theorem 1.1 Let X be an s-distance set on p concentric spheres in R™ . Then

Plim+s—i—1
1X| < Z( - )

i=0 8=
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Remark If p = 1, then 225! (’“"’""'l = "‘"’"? + (”‘:”;'2) and the bound coincides
with the bound given by Delsarte, Geothals and Seidel for the spherical case. If s < 2p-1,
then Y275 (m"':_':‘l) =¥l (m+:::‘l) = (2"‘:”2 This means that Theorem 1.1 is true
for s < 2p— 1. Hence if s = 2 and p > 2, then the upper bound given in Theorem
1.1 coincides with the known one, (”'*‘2 If s > 2p, then 775! ("‘"'"."'l) < ("‘"”) and

S=1 3
Theorem 1.1 gives a better upper bound.

As for the subsets in R™ there is an exapmle of 2-distance set in R® whose cardinality is
8+2) This example was found by Lisonék [7] and it is on 2 concentric spheres. However
it is not a tight 4-design as an Euclidean design even though whose cardinality coincides
with the upper bound.
It is still unknown whether any tight 2s-design gives an s-distance set or not. This
problem seems very important and interesting.

For more information on this subject, see [1] and [4].

In §2 we give basic facts about the vector space of the polynomials on finite number
of concentric spheres in R™. In §3 we give a proof of Theorem 1.1.

2 Polynomials on p concentric spheres in r™

First we give notation which will be used in the followings and then give basic facts
about polynomials on finite number of concentric spheres (see [4]). Let S53,5,,...,S, be
spheres in B™ centered at the origin of ™ and radii ry,7,...,7, respectively. Let S =
S51USaU---US,. Let P(R™) be the set of all the polynomials of m variables x,, 3, .. ., Zm.
Let Hom ¢(ER"‘) be the set of all the homogeneous polynomials of degree {. We denote the
Laplacian 2% ——; + —; 4.4 8:—; by A. Let Harm ((R™) be the set of all the harmonic
homogeneous polynormals of degree I, i.e., Harm ((R™) = {f € Hom ;(R™) | Af = 0}. Let
P(S) = {fls | f € P(R™)}, Hom ,(S) = {fls | f € Hom ,(R™)}, Harm (S) = {f|s | f €
Harm (8R™)}. For z = (1, Z2,...,%m) and ¥ = (¥1,¥2,...,¥m) in R™, inner product of =
and y is denoted by (z,y) = L, ziyi. Let [|2]* = (z,z) = T, z.%

The following propositions are known.

Proposition 2.1 (See [6])
(i) Hom ((R™) = Harm ((R™) @ ||z|[* Hom ;-2(R™)
(i) dim(Hom (R™)) = ("‘ﬂ'"l)

(iii) dim (Harm ,(®™)) = (™47 - ("H5°)



Proposition 2.2 (See [4]) Let p: P(R™) — P(S) be the linear map defined by o(f) =
fls for any f € P(R™). Then the followings hold.

(1) The kernel of p is the ideal generated by 12, (||z||? — r:?).

(i) Hom ;(S) = Hom ;(R™), for each non-negative integer i.

] 2p-1 2p—1
(ili) Y Hom i(S) = @ Hom ;_;(S) = @ Hom _i(R™)
=0 i=0 i=0
{ 2p-1 -
(iv) dim (z Homi(S)) =Y (m+l : 1)
i=0 i=0 b=
We define some more notations which we use in this paper. For a vector A =
(A1, A2,- .., A;m) whose entries are non-negatwe mtegers, we deﬁne [A] = =2, Ai. For
any = (z,%2,...,T,) € R™, we write = g MM .z Next proposition is very

elementary but useful.

Proposition 2.3  Let u= (uy,u2,...,um) € R™ be a vector. Then the coefficient of
the monomial z* in ||z||*(z, u)*~% is equal to
1

( = 20)! AY(z*) o=y

()1 (A2)! -+ (A )!

where A¥(z*)|:=. means that after taking the i times of Laplacian for the monomial z*
and substitute x = u.

The following lemma, which may be known well, is useful. We use some modification of
this Lemma in our proof of Theorem 1.1.

Lemma 2.4 Assume that there ezists a vector u = (u),us,...,%y) € R™ and real
numbers ¢, ¢z, . . - €] satisfying the following equation.

{zu) = Zcf|lx||2'(x u)'*

for any z = (21,%2,...,Zm) € R™. Then p(u) = 0 for any ¢ € Harm ((R™)
Proof. The coefficient of the monomial £,*125** - - - x* in {z,u)' is equal to

I A, M Am
IO - ()t 1 B2
for any non-negative integers A, Az,..., Am satisfying Ay + Ao+ - 4+ A, = [. Hence
Proposition 2.3 implies the following equation

($
wMup .yt = & Za.(l - 2i)! A¥(z T R P I |

i i=l
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Since A’ is a linear operator we have
P

(3]
Y el — 20)! (A f)(w) .

i=1

| =

flu) =

]

for any homogeneous polynomial f € Hom ;(R™). In particular if ¢ is a harmonic poly-
nomial in Harm ;(R™) we have ¢(u) = 0. 1

3 Proof of Theorem 1.1

Let X be an s-distance set in R™. Let A = A(X) = {d(u,v) | u,v € X, u # v}, where

d(u,v) = /(u — v,u — ) = [[u—v||. Then by the assumption on X we have |A] = s. Let
A= {ay,a,...,a,}. For each u € X, we define a polynomial F,, € P(R™) by

Ful#) = [T(le - ull - o)

Then we have

m

Fy() = 8uu(-1)'T] &® (3.1)

=1
for any u, v € X. By (3.1) the set of polynomials Fx = {F, | v € X} is linearly
independent in P(R™). For each u € X, the polynomial F, is a polynomial of highest
degree 2s, that is, F, € Y?,Hom ;(R™). Since Fx is a set of linearly independent
polynomials in a finite dimensional vector space 22, Hom ;(R™), X has to be a finite set.
Let R = Rx = {||u]| | u € X}. Then R consists of finite number of real numbers. Without
loss of generality we may assume that 0 ¢ R. Let |R| =p and R = {ry,73,...,7,}. For
each ¢ with 1 < 7 < p, let S; be the sphere in R™ with center at the origin and radius
Ti. Let S =85, US,U---US,. Then (3.1) also implies that Fyx is linearly independent
as polynomials in P(S). Let Fx(S) = {Fuls | v € X}. Then |X]| = dim ((Fx(S)}). In
the following we look for the upper bounds for dim ({Fx(S))). As it is mentioned in the
Remark right after Theorem 1.1, if s < 2p — 1 then Theorem 1.1 is true. From now on
we assume s > 2p.

Lemma 3.1

2p-1 -1
(i) (Fx(S)) c @ Hom,_i(S) +Pz: [|1z||% Hom,-i(S).
i=0 i=1 )
(i) (Fx(8)) < 2&91 Hom,_(S) +§pﬁ: ||={[*“*7 Harm,_;_5;(S)
i=0 i=l j=0

Proof We have the following expression for the polynomial Fy.

Fu(®) = Y BO(llall? - 2z, w))',

i=0
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where 8,0 < i < sis the elementary symmetric polynomial of {|[u]?—c,.. ., ||u|[*~o?}
of degree i. In particular ﬁé") = 1. Therefore
Fx € {llzl{z,u) | i+ < shH S Y llzli*Hom,(R™).
i+j<e

0<ij
Ifi#0,i+J < s, and 2i+j>s+1,thenwehavei>2i+j—s>1lands~i—j>0.
Therefore we have
|l=]1*Hom, (R™) = |)||**+5=9)}|z]|*~i~) Hom; (R™) C ||| [P+~ Hom,_(34—s) (R™).-
Hence we have

3 3 X
(Fx) € @ Homi(R™) + Y _ ||z|[*Hom,_;(R™).
i=0 i=0
Hence by Proposition 2.2, we have

2p-1 ) .
{(Fx(9)) C @ Hom,_;(S) + Z ]]zl]z'Hom,_;(S). (3.2)
i=0 i=0
Next, we will show that
) 2p-1 i-1 .
liz||*Hom,_;(S) ¢ € Hom,_i(S) +)_ [|lz||*Hom,_i(S), (3-3)
1=0 i=0

p

for any 7 > p. By Proposition 2.2, H(Ha:ll2 — r}) generates the kernel of the linear map p
=1

defined by restriction of the polynomials on R™ to S. Hence, as a polynomial on S, ||z||?

is a linear combination of [[z|[%,7 =0,1,2,...,p — 1. Therefore we have

-1
[lz|[*Hom(S) pz [|z|[#Hom(S). (3.4)

=0
for any integer { > 0.
Let j > p. Then by (3.4) we have

z|[*Hom,-;(S) = ||2|/?||z|*"~""Hom,_;(S) C
)
p o . p_l .
||| [*?=9)|=| 2P Hom, (S) = 3_ |zl Hom,_;(S).
1 k=1

i=
If 7 < 2k, then

2p-1
|1z] |29~ Hom,_;(S) C Hom,—(2x—;)(S) C €D Hom,_;(S). (3.5)
i=0
If § > 2k + 1, then
llzI*Y~®Hom,-;(S) = ||=I[*9?"||z||**Hom,_;(5)

=1
C |1z}~ Hom, _(;—axy(S) C Y l|z|[*Hom,_i(S) (3.6)
i=1
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because k¥ > 1. (3.5) and (3.6) imply (3.3). Induction on j using (3.3) implies

2p-1
Z ||z||*Hom,_(S) ¢ € Hom,_i(S) + 2 ||z|[*Hom,_(S).
i=0 i=0 i=1

Equations (3.2) and (3.7) imply Lemma 3.1, (i).
Next we prove Lemma 3.1, (ii). Proposition 2.1, (i) implies
. poi-l
|lzl|*Hom,_i(S) = Y_ |[z|[*“*Harm,_;_2;(S) + ||z|[*Hom,4;_2,(S),
j=0

for any ¢ with 1 < i < p— 1. Then by (3.4) we have

p-1
||| Hom,4i-25(S) € Y [|||* Hom,4i-25(S).
=0

(3.8) and (3.9) imply

p—i-1 p~1
||1:||2'H0m,_,(S Z ||:1:||2(’+J)Harm,_._2_,(S) + Z ||:1:||2'H0m,+,_2,,(S)
=0 =0

for any i with 1 < i < p— 1. Next we will show

2p-1

||x”2‘H°ms+t—2p(S C @ Homs-k(s + Z III||2kH°mJ—k(S)

forany i, {withl <i<p-1land0<I<p-1
If i + 21 < 2p, then

2p-1
||$||2‘H0m,+.'._2,,(3) C Hom,_(zp_m_,')(S) C @ Hom,_(S).
k=0

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Ifi+20 > 2p+1, then i+ 2! — 2p > 1. On the other hand 2p — i —{ > 2. Hence we have

llzI[**Homy.;-25(S) = izl || ***~*Y Hom,i-2(S)

i-1
C |l |*6+#~2P Hom, i+ 21-25)(S) C Y, [I=||**Hom,_x(S),

k=0

(3.13)

because i + 2! — 2p < i. Then (3.12) and (3.13) imply (3.11). Then (3.10) and (3.11)

imply

p=1-i

|||[*Hom,_;(S) c @ Hom,_&(S) + Y ||z|/***)Harm,—;_4;(S)

j=0

+ Z [|z][**Hom,_(S).

k=0
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Then induction on ¢ using (3.14) implies Lemma 3.1, (ii). 1
2p-3
Next we construct a subspace W in @ Hom,_;(S) satisfying

=1

(Fx(S))nW = {0},
dim W = dim (pz_:l _i-'||z||2('+’)Harm,_,_2,(S))

i=l j=0
2p-3
First we assume that there exist a polynomial g(z) € (Fx(S)) N €D Hom,—;(S). Then
2p-3 i=1
we can assume g(z) € € Hom,_;(R™) and
=1
P
Y auFu(z) = g(z) + f(=) [T(II=IP = r:?) (3.15)

u€X i=1

for any z € R™ with some real numbers a,, u € X and a polynomial f(z) € P(R™) whose
2(s—p)
leading term is of degree 2(s — p). Let f(z) = 3. 3 baz*. Let us express
i=0 M=t

Y auFule) = 3 a3 Bl - 2z, )Y,

u€X vEX 1=0

where ™ is the elementary symmetric polynomial of degree i for [[u[? — o2, |[u|[? —
aZ,...,|lul|z - 2. In particular A$*) = 1. We also express

l'[(llﬂvll2 -1%) = 25 -ll=I®,

J=1
where §; is the elementary symmetric polynomial of degree i for —r%,—r2,...,—rZ. In
particular dp = 1. With the notation given above we have
minlle) =25 (u) 25 t-2j
Sar@=Tay 3 (25 ) Muete e
uEX u€X  I=0 j=max{0,—s)

and

P 2s-2p P )
1a) TL Qe =7 = ( > b) (z a,-,-nzn”)

i=0 |A|=i =0

=§ 2 Y. Spshallz|e? (3.17)

=f 0<j ==
t= ol :(.',)<2,<c Al=t-2;
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2p-3
Since g(z) € € Hom,_;(R™) we can prove the followings, using equations (3.15),

(3.16) and (3.17),

min{p§]) , £ : ;
Z ‘sp-J‘“zuzJ Z bzt = (_2)122_21(1.7' )Za"ﬁ(U)HJ“I”zJ(-T’")‘-zJa

j=0 [A)=t-25 j=0 ueX
for0<i<s—-2p+2, (3.18)

Z ,5”,:”2(»-1) Z b,\a:"

0<j<min{p, 2271} A=t-2p+2j
[21—!
= ( 2)2a—l”I||2(l—s) Z 9-2j (J +; ) Z auﬁ(")||a:||2’(a: u)za-l-z’;
. u€X
for s < 1.<2s. (3.19)

Let l=5+14,0<i<p,in (3.19). Then we have

Z 6]'”1”2(’_".) Z b,\:t'\
OSjSmin{p.'—;—‘} |Al=s+i-2p+2j

rall
= (-2 lall® 3 27 (z +J) > @Bzl Pz w2 E. (3:20)

j=0 uex

We have the following proposition.

Proposition 3.2  The assumption and notation are as given before. The the following
conditions hold.

M) 3 bt e (Jlall¥ (o, )~

|A|=i
forany0<i<s-—-2p+2

0<J<[]u€X>

@) ¥ o€ JlalPeH e, up iy

[Al=8—p+i
for any 0 < i < s — p, and the coefficient of the term ||z||%*+9)(z, u)*~P~~% in it is

given by a linear combination of ,B,("),O <1 < j. In particular coefficient of

2llE (e, )P~ is given by (~2)*#~" (p s )

+1

0<]<['_—] uEX)

Proof We can prove (i) and (ii) inductively using (3.18) and (3.19). 1
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If 0 < i < s - p, then by Proposition 3.2, ia=s-p+i 02z is a multiple of |[z][*. Let
us define B;_,_;(z) and B;(z) by

> bt =|zl®Bl, (z), 0<i<s—p
Al=s=p+i
and
Bi(z)= ) bz*, 0<i<s—-p-1
=i
We express (3.20) using this notation and get

[%"’_‘] o min{p, 25"
Z 6.1"Izllz(p-'_J)Bc~2p+2j+i(z) + Z d; Ilz”zJBs—;—&J(z) =
=0 =241

7
(-2 3 27 (z +J) Y aufllelP iz, up ¥, 1<i<p-1.

j=0 ueX
(3.21)
Then by Proposition 3.2 we have
(2= o
;] lelzl|2(p_‘_J)Ba—2p+2j+i(z)
J=
[22—;—3]
Yo > augia(llelPlzlz, u)* ¥ + hyi(z), 1<i<p—1.
=0 ueX
(3.22)

where hs_i(z) is a polynomial in
<||:c||2'(:z:,u)‘ | A+j=s—14, 0<j< s—2p+2>,

and g;(||u||?) is a linear combination of ﬁ("’, 0 < j < 1. More precisely

l

gia(||u]|?) = (=2)*~+% (s+ l) () 4 a linear combination of {8 ("), 0<j<i} (3.23)

Let UtSF ) be a subspace of Hom,_;(R™) defined by
Uish = <||z||2i<z, u)! | % +l=s—i, 0<I< k>.

Denote the polynomial in Hom,_;(R™), which is the first term in the right hand side of
(3.22), by ®,_;(z). More precisely
lﬂg—i-ﬂl - .
Bpi(z) = Y Y awgitlllelP)izl*(z,u)* ¥, 0<i<p.

=0 ueX
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Then (3.22) implies

(=

B,4(z)— Y izl B, gpimsilz) € USTPH, (3.24)
=0

We have the following lemma.

Lemma 3.3 Assumption and notation are as given before. For each i and j with
1<i<p-1,0<j<p—1i-—1 there exists a polynomial G;;(t) of degree j in one
variable t satisfying the following condstion

ZxauGi,j(“u”z)(-'B, u)*~=% g US55
u€

Moreover the polynomials G;;(t), 1 <i<p—1,0 < j <p—i—1, are independent of the
constant a,, u € X.

Proof Leti=p—1in (3.24). Then we have
$a-pi1(2) = [12]* Bop-a(z) € USSP,
Let : =p— 2 in (3.24). Then we have
s-pra(®) — |21l Bop-ala) € USSF™.

Thus induction on p — i shows that for any ¢ with 1 <7 < p — 1 the following holds

[e=5=i]
Boi(@) + Y 5l[2][F®Bymiv2j(z) = ||2||*P ) Bymgpui(z) € USSP,
=1

with some constants ¢j, 1 < j < [t;—‘l] Hence we have
(2=

@)+ Y, il[all?Psmizas(z) =0 mod UE*.
i=1

Then we have

(=5 ) <s—zori
A @iz)+ Y llelFEuini(z) | =0 mod USIE,  (3.25)
=1

for any ! with 0 < ! < p-i—1. On the other hand by the definition of ®,_;(z) the

l
coefficient of the term ||z||*(z, u)*~-2* in &,_;(z) + E, c,||z||2J<I>,_,_2,(:z:) also has
the following form

(- 2)""2"( )a,,ﬁ(") + a linear combination of {ﬁ("), 0<j<k} (3.26)

+k



The formula (3.26) is a polynomial in |Ju||? of degree k and the leading term is

( 2)3-;—2!:( . k)au”ullzk — ( 1)3-l2a—|-2k( 4 k)au”ullzk-
In general the following holds

A(ll=lP(z, u)*) = 2(m + 2 + 2k — 2)||z] "Nz, w)* + k(k - Dllul|?||z][*(z, u)*-2
Therefor we have

(=L
Al (‘I’s-e(ﬂ-‘)'*‘ > Cj||$||2jq’a-i—2j($))

j=1
= Y aGu(llulP)z,uy "%,  (mod USTZ*%).  (3.27)
ueX

where each G;;(t) is a polynomial in one variable ¢ of degree ! which is independent of a,,

for any ! with 0 <! < p—1i— 1. Then (3.25) and (3.27) imply Lemma 3.3.

1
2p-3

Let W be a subspace in €5 Hom,_;(S) defined by

i=1

p-1p-i-1

W =Y > Gi;(llz|l*)Harm,_;-2(5),

i=l j=0
where G;;(t), 1<i<p-1, 0<j<p-i-—1, are the polynomials of degree j given in
(3.27).
We have the following lemma.
Lemma 3.4

Notation is as given before. The followings hold.

(i) (Fx(SHnw = {0},
p-1p=-i~-1

(i) dim W = dim (Z 3 ||=|[***Harm,_ ,_2,(5))
=1 j=0

Proof Let g(z) € (Fx(S)) N W. We may assume

olz) € (z: "SS Gyl ) Harm, iz (&” )) (3.28)

=1 j=0
and

ueX

™ auFu(z) = glz) + () f[l(nzn? —r) (3.29)



for any z € R™ with some real numbers a,, u € X and a polynomial f(x) whose leading
term is of degree 2(s — p). Since we have

-1 p—i-1 2p-3

Z Z Gta(“zuz)Ha‘ms—t-—h(S) C @ Homs_,(S)

i=l j=0 i=1

we can use Lemma 3.3 and we have

i —i=2j-2
zx"'uGta(||u||2 Nz, u) "% € U(f:-;,; -2,
u€

forany i and j with 1 <i<p—-1,0<j<p-1i~—1. Then asimilar argument as given
in the proof of Lemma 2.4 implies

> auGis(llul®)e(u) =0,

ueX

for any (z) € Harm,_;_2;(R™). Hence by (3.28) we have

3" aug(u) =0. (3.30)

ueX
On the other hand (3.29) implies g(u) = a, F(u) = a,(—1)*[Ii.,; @?. Then (3.30) implies
-1y TTe} S a2 =0.
i=1 ueX

Since (—1)* 1., of is a nonzero real number and a2 > 0, u € X, we have a, = 0 for any
u € X. This completes the proof of Lemma 3.4, (1) Lemma 3.4, (ii) is obvious because
the folowings hold

p=1p-i-1 2p—1
Z Z G.‘,(||I||2)Harm,__,_2](5) C @ Ho My _,(S)
i=l j=0

and
p-1p-1-—i o 2p—1
2 Zﬂ ||1:||2(‘+’)Harm,_,-_g,-(5) C eé’ Hom,.,.,,_l_,-(S).
1= J: 1=

Now we are ready to prove Theorem 1.1.

Proposition 2.2, Lemma 3.1 and Lemma 3.4 imply
p-1p-1-i

(Fx(8)) e W C @ Hom,_;(S) + Z 3 lz]|**)Harm,_;—2;(S).

=0 i=1 j=0
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Then we have

dim({(Fx(S))) +dim W = dim ({Fx(S))) + W)
< dim (2él Hom,_,-(S)) + dim (pil p_zl_‘ ||x||2(i+j)Harm,_i_zj(S))
=0 i=1 j=0

il

2p-1
dim (@ Hom,_,-(S)) +dim W.

1=0
Hence we have

i=0

1X] = dim({Fx(S))) < dim (2591 Hom,_.-(S)) .

Then Proposition 2.2 implies Theorem 1.1. (]
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Some blocking semiovals which admit a
homology group

Chihiro Suetake(&FT T#)

Himeji-kita High School, Himeji, Hyogo 670-0012, Japan

1 Introduction

Definition
Let I = (P, L) be a finite projective plane.

o A blocking set in I1 is a set B of points such that forevery linel € £, INB #
¢, but ! is not entirely contained in B.

e A semioval in Il is a set C of points such that for every points P € C,
there exists a unique line I € £ such that !N C = {P}. (The idea of a semio-
val was introduced in [3] and (7].)

e A blocking semioval in II is a set S of points which is both a semioval
and a blocking set.

Motivation

The study of blocking semiovals in finite projective planes was motivated by
Batten (1] in connection with cryptography. The study was started by Batten
and Dover in [2] and Dover in (4, 5]

Problems
o Classify all blocking semiovals.

e What can we say about sizes of blocking semiovals in a finite projective
plane?
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¢ Construct families of blocking semiovals.

Notation

Let S be a blocking semioval in a finite projective plane I1 = (P, £) of
order g¢.

Then, set

z; = {L e L|IN S| = 1}

and
X(S) = (z1,22,° -+ ,Tg-1)-

o1y =0, z ='S|

o If ¢ > 3, then z, = 0 ([4]).

Known families of blocking semiovals
Let [T = (P, £) be a finite projective plane of order .

(1) Let ¢ > 3, and let !y, 1, and I3 be any three nonconcurrent lines. Then

T:={PePlPclhul,Uuly, P£LNhL LNk LN}

is a blocking semioval of size 3¢ — 3 with z,_; # 0. (This blocking semioval
is called a vertezless triangle.)

(2) If ¢ > 5 and II contains a A—configuration (Any PG(2,¢) has this
property.), then there exists a blocking semioval of size 3¢ — 4 with X(S) =
(3g—4,3¢— 6,4 — 79+ 14,29 - 6,0,---,0,1,1,1) ([5,6]).

(3) If q is a square prime power, then there exists a blocking semioval U/
of size ¢,/g + 1 in PG(2,q). This blocking semioval is called an unital U
has the following property: If ! is a line of PG(2,q) with |l N U| > 2, then
ENU|=G+1.

Bounds([5])
Let IT be a finite projective plane of order ¢, and let S be a blocking semioval
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in IT.
(1) Ifg>7, then
2+2< S| <qv/g+1.

(The upper bound was proved by Hubaut and is sharp by the existence of
unital. But the lower boud seems not to be sharp.)
(2) If g >3 and S has a (g — k)—secant, 1 < k < ¢ — 1, then

3k+4
S a—k<]|Sl
k+27 k<15l

(This bound also seems not to be sharp.)
(3) If g > 7 and z4-; # 0, then

17-15151 <3 -3
and the upper bound is met if and only if S is a vertexless triangle.

Constructions

In this note, we consider some blocking semiovals in PG(2,q) which admit a
nontrivial homology group, and construct the following two families of block-
ing semiovals:

(i) If ¢ = r¢, r > 3, r a prime power and e > 2, then there exist block-
ing semiovals of size 3¢ — 4 with £,_; =0 (see Theorem 3.3).

(ii) If g =%, r > 3, r a prime power, ¢ > 2 and 3 < n < r, then there
exist blocking semiovals of size 3¢ — n — 2 with z,_; = 1 (see Theorem 4.5).

2 Blocking semiovals of homology type
Notation

V = {(a, b, ¢)\a,b,c € GF(q)}:three-dimensional vector space over GF(q)
q27
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PG(2,q) = (P, L)

P := {P|P is a one — dimensional subspace of V.}
= {[a,b,c]|a,b,c € GF(g), (a,b,c) # (0,0,0)}

[2,b,c| := {(az, bz, cz)|z € GF(g)}

L = {l|l is a two — dimensional subspace of V.}

Io = {[0, 4, 8]la,b € GF(q), (a,b) # (0,0)}

Ry :=1[0,0,1] €y :

2<n<y¢y-2

Pi:=[0,1,a)) €ly (i=1,2,---,n)distinct

Qo == [170:0] ¢l

2;:a subset of P,Qy — {Qo, P} with |%] >2 (i € {0,1,:--,n})

S:=(l)UQUU---UQ, — {F, Py, Pa}

We will derive a necessary and sufficient condition for 5 to be a blocking
semioval.

Dy = {z € GF(q)|[1,0,z] € N} C GF(q)"
A; = {z € GF(g)|[1, 2,0:7] € ©;} C GF(q)
(t=1,2,---,n)

‘I’jk = (a;,- i a_,-)Ak, (I)ijk = ﬁA};

(,5,k €{1,2,---,n}, 1 #£ j)

Assumption 2.1
Assume that —A; = A; for all i € {0,1,---,n}.

Lemma 2.2

S is a blocking set if and only if the following (i),(ii) hold.
(i) GF(q)* =AU A U---UA,.

(ii) For enyi € {1,2,---,n},

GF(g)" = Uigjizi)en®is U Do.

Lemma 2.3
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S is a semioval if and only if the following hold.
(i) Ifa € GF(q) — {a1,a2," -+, a,}, then

GF(q)" = AgUUicicn(a; — a)A;
(ii) If a € Ay, then there erists a unique element j € {1,2,--,n} such that

a & Ungki)enPix

, but

a € Ur<k(zi<n®ik
forallie{1,2,---,3,---,n}.
(iii) Letz € {1,2,---,n} and a € A;. Then one of the following (a) and (b)
occurs. ,
(a) If @ ¢ Urck(iycnlk, then

a€ Do UUgr(sti,)<nPise

a; — aj
foralje{1,2,--+,i,---,n}.
(b) If a € Urc(sij<nDs, then there ezists a unique element j € {1,2,--- RPNy
such that ]
a¢ ra,-A" UUrigi(#45)<n ik
, but
ac

P a,AO U U<k nPisk

forall s € {1,2,--,3,--,5,---,n}.

3n=2

In this section, under Assumption 2.1 we consider the point set S of PG(2,q)
defined Sectin 2, when n = 2. Then we may assume that a; = 1,43 = 0. We
remark that from the definition of A’s, |A;} 2 2 (i =0,1,2).

Theorem 3.1

Letn =2 anday =1, ag = 0. Then, S is a blocking semioval if and only if
the following hold.

(i) Ifi # j € {0,1,2}, then

GF(Q)- = Ai U AJ'.
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(ii) Ifa € GF(q) — {0,1}, then
GF(g)' =/0U(1 —a)AUad,.
(i) If {z,3,k} = {0,1,2}, then

A,' = (AJ - Ak) U (Ak - AJ)

Corollary 3.2
If S is a blocking semioval, then |S| = 3q — 4 and, furthermore, when q is odd,

1 0 0
an involutory homology | 0 -1 0 | actsonS.
0 0 -1

Theorem 3.4
Letg=r®, r 2> 3, r a prime power and e > 2. Set

Ag = GF(T‘)'

Let ® be a nonempty subset of GF(r)* such that —® = ® and & # GF(r)".
Here, ifr is even, let 2 < [®| < r — 3. Set

Ay = (GF(g)* - GF(r))U®

and
Do =GF(q) —@.

Then Dy, Ay and A, satisfy (i),(ii) and (iii) of Theorem 3.1. Therefore, the
point set S corresponding to N, A and Az i3 a blocking semioval of size
3q — 4 such that z4—y =0 and z,—2 # 0.

4n>3

In this section we consider the set S of points of PG(2,q) defined in Sec-
tion 2 for n > 3.
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Assumption 4.1

(i) q=r%, r 23, r a prime power and e > 2.

(i) 3< n<rand GF(r) 2 {ai,az,- - ,an}

(iii) For any i € {0,1,---,n} and for any z € GF(r)*, z; = ;.

Theorem 4.2

Under Assumption 4.1, S is a blocking semioval if and only if the following
hold.
(i} For anyi € {0,1,--,n},

GF(q)" = Uogj(#icndd;-
(ii) For any a € GF(q) — {a,a2,"**,axn},
GF(g)" = Uigicalai — a) AU Lq.

(iii) For anyi € {0,1,---,n} and for any a € A;, there exists a unique element
j€{0,1,--+,3,---,n} such thata € A;.

Theorem 4.3

Under Assumption 4.1, S is a blocking semioval if and only if for all distinct
i,j € {0,1,---,n} there exists a subset A;; of GF(q)* which satisfies the fol-
lowing.

(i) Each A;j is closed under multiplication by GF(r)*.

(i) For all distincti,j € {0,1,---,n},

A.‘j = Aﬁ
(iii) For any i € {0,1,---,n},
8; = Upgjizigndij # ¢-

(IV) GF((])' = U05i<anAij isa deOlﬂt union.
(v) For anya € GF(q) — {a1,**,asn},

GF(q)" = Urgicn(a: — a)D; U Q.
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Corollary 4.4 If S is a blocking semioval, then |S| = 3¢ — n — 2 and the

100

homology | 0 s 0 | (s € GF(r)*) acts on S.
00 s

Theorem 4.5

Assume Assumtion 4.1. Set

by = GF(q)

and let
GF(q)*=AU---UA,

be a mutually disjoint union. Then Do, Ay,---, Ay satisfy (i),(ii) and (iii) of
Theorem 4.2, and the size of the blocking semioval corresponding to g, Ay, -+, A,
83¢—n—-2andz, =1

Problem
Can we construct a family of blocking semiovales of size 3¢ — n — 2 with
g1 = 07
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Abstract

It is known that (T, M, S)-nets are equivalent to some class of
ordered orthogonal arrays, and linear ordered orthogonal arrays with
strength 4 are equivalent to theta configurations in finite projective
geometries. In this paper, theta configurations are constructed from
twisted cubics in PG(3,g). These imply the existence of (0,4,q + 1)-
pets in base ¢ for all prime powers q.

1 Introduction

The idea of a (T', M, S)-net in base b was introduced by Niederreiter [12] in
1987. Its applications to two important methods for pseudorandom number
generation, namely the digital multistep method and the generalized feed-
back shift register method, which in turn can be employed in cryptographic
protocols, were also presented in [12]. This new concept significantly gen-
eralized that of a family of low discrepancy point sets in the S-dimensional
unit cube [0,1)° due to Sobol’ [14], which are useful for quasi-Monte Carlo
methods such as numerical integration. The use of (T, M, S)-nets in the com-
putation of definite integrals has had particular impact in the area of finance

[1].
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We begin with Niederreiter’s definition of a (T, M, S)-net. Let S > 1 and
b > 2 be integers. An elementary interval in base b is an interval of the form

s
E = [Jlad™%, (a: + 1)67%),

i=1
where a; and d; are non-negative integerssuchthat 0 < a; < b% for1 <i < S.
The volume of E is s

[[67% =b-Zias,

i=1
For integers 0 < T < M, a (T, M, S)-net in base b is a set A/ of ¥ points in
the S-dimensional unit cube [0, 1)5 such that every elementary interval E in
base b having volume b7~¥ contains exactly b7 points of AV.

(T, M, S)-nets have received considerable attention in recent literature.
Various connections with other areas have arisen in the study of (T, M, S)-
nets, e.g. with finite fields, algebraic coding theory, and finite projective
geometries. Especially, (T, M, S)-nets have been characterized by combina-
torial structures called orthogonal arrays, which are defined below.

Let A be an m x s array over the set V of b symbols, and R be a subset
of columns of A. We say R is orthogonal if R contains every |R|-tuple over V
exactly m/b\® times as rows. If A is orthogonal for any ¢-subset R of columns
of A, then A is called an orthogonal array (OA) of strength ¢, denoted by
OA,\(2, s, b), where A = m/¥t.

Schmid [13, 11] proved that (T, M, S)-nets are equivalent to a type of
orthogonal arrays called orthogonal orthogonal arreys. Lawrence [7, 8] in-
dependently showed an equivalent result in terms of generalized orthogonal
arrays. In this paper, we will follow Edel and Bierbrauer [3], and Martin and
Stinson (9, 10] in using the term ordered orthogonal arrays. Such arrays were
also called cubical orthogonal arrays by Colbourn, Dinitz and Stinson in [2].

Let V be a set of b symbols. An ordered orthogonal array (OOA) A of
strength ¢ is an m x sl array over V which satisfies the following properties:

1. The columns of A are partitioned into s groups of [ columns, denoted
by Gl’ G2: ‘Y Gs;

2. Let (¢),2, ..., t5) be an s-tuple of non-negative integers such that 37, ¢;
=t where 0 < t; < lforl € i € 5. If R is the subset of the
columns of A obtained by taking the first ¢; columns within each group
G;, 1 <1< s, then A is orthogonal for such an R.
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We use the notation OOA, (¢, 3,1, b), where A = m/b , or OOA, (¢, s, b) when
=1l
When ! = 1, the above definition reduces to that of an orthogonal array,
i.e.,, an O0A,(¢, s, 1,b) is equivalent to an OA,(¢,s,b). When ! = ¢, we have
the following important results.

Theorem 1.1 ({7, 13]) There ezists ¢ (T, M, S)-net in base b if and only if
there ezxists an O0Ayr(M ~ T, S, b).

Corollary 1.2 There exists an O0A,r(2, S,b) if and only if there exists an
OAyr(2,S,b). :

When ¢, =t; =--- = £, = 1, we obtain an orthogonal array OA,(¢, s, b).

Theorem 1.3 If there exists an Q0A\(t, s,1,b), then there exists an
0A,\(t, s,b).

In an earlier paper [4], we introduced the concepts of a linear orthogonal
array and a linear ordered orthogonal array, and then tried to determine their
equivalent configurations in finite projective geometries. These geometrical
configurations were used to investigate the existence problems of such linear
arrays. These, in turn, yielded the existence of the corresponding (T, M, S)-
nets in base b.

Consider an m x s orthogonal array (or ordered orthogonal array, respec-
tively) as a set of rows A over the finite field GF(b), where b is a prime power.
If A is a linear space over GF(b), then A is said to be a lineer orthogonal
array (or linear ordered orthogonal array, respectively). Note that, since A
is a set of rows, no repeated rows are permitted to occur in any linear or-
thogonal array (or linear ordered orthogonal array, respectively). Fuji-Hara
.and Miao (4] showed, among others, the following result:

Theorem 1.4 When b # 2, there ezists a linear O0A,(3, s,b) if and only if
there exists a linear OA,(3,s,b), where A\ =3, n > 3.

2 Theta configurations in PG(n — 1, q)

Suppose that S is a set of s points in a projective geometry PG(n - 1,q)
over GF(q), n > 4. A tangent line (or unisecant) l to S at a point P€ S is
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a line such that INS = {P}. A tangent plane to S at P is a plane 7 such
that #NS = {P}. For points P, P,,...,Px of PG(n —1,q), if there is a plane
containing these points, then Py, B, ..., P are said to be coplanar.

Let S ={P, P,,..., P} be aset of s points in PG(n —1,g). We consider
the following configuration in PG(r — 1,q) for n > 4:

(C1) no four points of S are coplanar;

(C2) for 1 < i <s,l;is a tangent line to S at the point P, € S and every
plane containing ; meets S in at most one point other than F;.

(C3) Ly, 1,,...,1, are mutuslly disjoint;

(C4) m; is a tangent plane to S at the point P, € S containing the tangent
line ; for1 <i<s.

Such a set {S;1y,13,...,l;m,m2,..., 7} of points, tangent lines and tan-
gent planes is called a theta configuration for S, and is denoted by ©(S). The
following results can be found in Fuji-Hara and Miao [4].

Theorem 2.1 There ezists a linear O0Ayn-4(4, s, q) if and only if there ez-
ists a theta configuration ©(S) for a set S of s points in PG(n — 1,q).

Theorem 2.2 If there erists a linear OOAg-~s(4,s,q), then the following
inequality holds:
1

<q+1>s+<q—1)(§) <

Theorem 2.3 If there erists o linear OOAgn-4(4, s,q), then the following
inegquality holds:
qn—2 -1

g-1

§<
We note that the bound required for s in Theorem 2.3 is larger than that in
Theorem 2.2 for n > 5. When n = 4, i.e. in PG(3, g), the inequality s < g+1
holds. As a consequence, we [4] showed that usually it is not necessary to
pay attention to the condition (C4) of the theta configuration.
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3 Conics and Cones

A k-arcin PG(n—1, q) is a set of k points no n of which are in a hyperplane
of PG(n - 1,q). In PG(2,¢q) and PG(3,¢), it is a set of k points no three of
which are collinear, and no four of which are coplanar, respectively. We have
the well-known result in PG(2,q) that k £ g+ 1ork < g+ 2as qis odd or
even.

Theorem 3.1 (Lemma 21.2.1, Theorem 21.2.4 and Theorem 21.3.8
of [8]) There ezists a k-arc in PG(3,q) if and only if

5 ifg=23;
ks{q+1 ifg 24

Let 7 and P be a plane and a point in PG(3, ¢), respectively, such that P
is not on 7. The projection from P onto 7 in PG(3,q) is the map 7, : @ —
P@Qnx for any point Q in PG(3, q) being not P.

A conic is a point set of a non-singular quadrics in PG(2,q) {(Xo : Xi :
Xg) | aooX02+011X12+022X22+001X0X1 +aeeXo X2+ 212X X2 = 0}, where
ai; € GF(q) are not all zero. From Lemma 7.7 of [6], any conic in PG(2, g) is
a (g+ 1)-arc. Conversely, by Theorem 8.5 and Theorem 8.14 of [6], when g is
odd, any (g+ 1)-arc in PG(2, g) is a conic; and by Lemma 8.21 and Corollary
8.32 of [6], when ¢ = 2,4, and 8, every (g + 2)-arc in PG(2,q) contains a
conic.

A cone II(P;lp, Iy, ..., 1) is a set of g + 1 lines in PG(3,q), lo, U, .., 1g,
through a point P such that any plane not through P meets the cone in the
points of a conic. A cone is also generated by a point P and a conic C on
a plane 7 not through P, denoted by II(P, C). Note that no three lines of a
cone are coplanar.

Theorem 3.2 (Corollary 7.5 of [6]) In PG(2,q) with ¢ > 4, there is a
unique conic through e 5-arc.

Theorem 3.3 Let C; = II(P;ly, ly, ...,1;) and C; = II(Q; mo, M4, ..., my),
- P # Q, be cones in PG(3,q), ¢ = 4, If they have a line in common, say
lop = mg , then one of the following two cases holds:

(i) each line of C; meets a line of Ca, say kNm; = P, fori=1,2,..,,q;
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(ii) there are g—1 pairs of lines (I;, m;) which are concurrent, say LNm; =
P fori=2,...,q, and there is a pair of lines which are mutually skew,
say ly Nmy = ¢.

Figure 1: case (i) Figure 2: case (ii)

Proof Let 7 be a plane not through P. Consider the projection v, from
P onto w. If y,(m;) = v,(m;),% # j, then m;, m; and mp are coplanar.
Hence the lines «,(m,),...,7,(m,) are distinct and all pass through the
point v,(Q). Each line {; for i = 0,1, ...,q maps onto « at the point v, (}).
Note v,(lp) = 7,(Q). Since no three lines of /;’s are coplanar, no two points of
1-(li),i=1,...,q, are on a line passing through v.(Q), including v.(m;)’s.
Therefore, we have only two cases: (i) on each line 7,(m;), there is exactly
one point of 7, ({;)’s on it, (ii) g—1 points in v, ({;)’s are on the lines v, (m;)’s
and the remaining one is not on any line of v,(m;)’s. In the both cases, if
a point v, (!;) is on a line v,(m;) then 7, (;) is the image of the intersection
point P; = ; N'm;. (]

For ¢ = 2,3, the number of intersection points is at most 3. Therefore
the both ceses are true.

Theorem 3.4 The set of points {P, P,..., P;} of (i) in Theorem 3.3 is
coplanar and {P,Q, P,.., P} of (ii) is a (g + 1)-arc in PG(3,q), ¢ > 4.

Proof (i) Let P, = {P,, P, ..., P;}. If there are no four points of P; which
are coplanar, then P, U {P, @} is (g + 2)-arc in PG(3, ¢). This goes beyond
the bound. Suppose that there is a plane 7 which contains four points of P,.
Note that 7 contains neither P nor . With the point w Ny, the five points
in 7 are contained in a unique conic from Theorem 3.2. Therefore all points
of P, are on .
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(ii) Let Py = {Ps, P, ..., P;}. Suppose that there is a plane 7 which contains
four points of P,. 7 contains neither P nor Q. With the point wN1;, the five
points in 7 are contained in a unique conic from Theorem 3.2. The conic is
_the intersection of w with both C; and C,. Since {; N and m; N are distinct
points, the conic contains ¢ + 2 points. So P; is a (g — 1)-arc in PG(3, ).
Since any plane through P contains at most two lines of C;, P, U {P} is a
g-arc in PG(3,¢q). Next, we show that the four points P, P;, P,Q, i # j,
i, & {0,1}, are not coplanar. If P;, P;, P,Q are coplanar, then the lines I
and my are concurrent. This implies that [, I; and Iy all meet the line my,
that is, these three lines are coplanar. This contradicts the property of a
cone. (m]

4 OOA;(4,9g+1,9) and (0,4,q + 1)-net

A twisted cubic in PG(3, g) is the set of points which may be written in the
canonical form below:

T = {(&,£%,t,1)| t € GF(q)} U {(1,0,0,0)}.

From Theorem 21.1.1(iv) of [5], any twisted cubic is a (g + 1)-arc in PG(3, q)
for ¢ > 3. When q = 2, it is a conic. Conversely, from Theorem 21.2.3
and Theorem 21.3.17(v) of [5], in PG(3,q), ¢ = 2,4,8,16,64, or odd, any
(g + 1)-arc is also a twisted cubic.

Lemma 4.1 In PG(2,q), ¢= 2,4, or odd, a g-arc is contained in a conic.

Proof See Lemma 8.21 and Theorem 10.28 of [6]. o

Theorem 4.2 Let T be a twisted cubic in PG(3,q). For any point P T,
the set of q lines C(P) = {PQ | Q € T \ {P}} is contained in a cone.

Proof Corollary 2 in page 237 of [5] implies that C(P) is contained in a
cone for ¢ > 7. For g < 7, consider the projection from P to a plane 7 not
through P. The image of 7 on the plane 7 is a g-arc. Lemma 4.1 says that
any g-arc is contained in a conic C in PG(2,q), ¢ = 2,4 and odd. So the
cone II( P, C) contains C(P). o

—118—



Theorem 4.3 In PG(3,q), q a prime power, there exists a ©-configuration
O(S5), |S|=s,ifand onlyif L <s < q-+1.

Proof From Theorems 2.1 and 2.3, the existence of a ©-configuration can
imply the inequality s < ¢g+1 in PG(3, q). Conversely, let S be a twisted cubic
7. For any point P € T, there is a cone C(P) = C(P; PP, PP,, ..., PR, lp),
where P; € T \ {P} and lp is a tangent line at P to 7. Since lp is a line of
the cone, every plane through !p meet 7 in at most one point other than P.
For Q € T, Q # P, there is also a cone C(Q) including a tangent line g to
T at Q. From Theorem 3.4, lp and lg are mutually skew. Since s = ¢+ 1,
there is a tangent plane wp to 7 including the tangent line [p for each point
PeT.So{T; {lp|P € T}; {zp|P € T}} is a ©-configuration. For ¢ = 2,3,
©-configurations are constructed by a computer. (m]

From Theorem 1.1 and Theorem 2.1, the following results are immediate:

Corollary 4.4 There ezists a linear orderéd orthogonal array OOA,(4, s,q)
if and only if 1 < s < q+ 1, q a prime power.

Corollary 4.5 There erists a (0,4,9+1)-net in base q for any prime power
q.
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On Some Relationships Among the Association Schemes
of Finite Orthogonal Groups Acting on Hyperplanes

B X9
k- g

ZORETH, EEFREMPLEH->TRYBA TVD association scheme, TRHHF
H2OHABELOEZHE GO1ms1(2) P GO1m41(q)/GO5n(q) ~DEM LB END as-
sociation scheme X(GO2m+1(q), GO2m41(0)/GOE(q) IS L THEENB|~BERE. £iC
GOm+1(9)/GOF,(g) DBBIZHWTRET S, ¥, I ZTAVLASERNYR - AES
{22V T IZ Bannai-Ito (3], Munemasa [7], ATLAS [6] £3B&hti,

UFqg=2"(r21) &5, V% GF(g) £ (2m +1)}-KT~<2 A ZH,. Q:V — GF(q)
BV EOHBMEZKEBX, [ VxV — GF(q) 2FERRBRET S, FL  VO2ERN
SBE {u,v} B Qu) =Q(v) =0, f(u,v) =1 ZMA+ L (u,v} % hyperbolic pair &FF
H, Radfi=(ve V]| f(y,v) =0foreveryu e ¥} i< & Rad f i3 1 KEHHSRMTH
N.Q(r)=1,RBTveVNMEELTRS = (r) LBIB, £/, HEHBHBMAD
Q DHIR A non-degenerate (resp. degenerate, positive-type, negative-type) THH L & ED
M53r%EM % non-degenerate (resp. degenerate, positive-type, negative-type) &BFEKR, HEZBE
GOzm+1(g) 13 positive-type hyperplanes D2 LDOMRE Q = Qapmyi(q) IKABIEAL, 55
FROREMHTEL GOS, (q) LRABRBTHD, £»T

o= @ -D@-1...(" - 1)
2qrm-D(gm ~ (@7 -1) .. (@ - 1)
_q™em+1)
B 2
%185 (cf. ATLAS[6, p.xii]).

QORLD2HDE U,V iZ2WT UNV A non-degenerate DHE. Qw) =1 ¥~ ¥
TwelUNnV BEELT,

UnV=w*nlU=wtnVv
XD, EB6IZUNYV OIERD non-degenerate hyperplane W {2t L
U={uwlW, V= (vu)lW

»2Q(u) = Qv), flu,w) = flo,w) =1 %2Mi=Fuel veV BFETD, ZDuy,v il
*L

_  fu,v)
A= fluy,v)+1
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LEBTDH L. A it well-defined 22 A #0,1 CH Y, AU, V) :={A, A7} i W,u,v DB
DFIESTEE S EANREN, THEAVT £(COzmp(q), Q) DEGERKO & 5 IRk
&has:

Ry:={(U,U) e xQ|Ue},

R :={(U,V) € Qx Q- Ro |UNV : degenerate},

R;:={(U,V) € Q x Q= Ro | UNV : non-degenerate, A(U,V) = {v*~},p~li-D)}}

(2<i<])

ZITveGF(g) RGF(g) PHEBRTHD, X(GO2m+1(9),R) 17 T X L O3FF72 asso-
ciation scheme T¥ 3,

Xl RERDLIIZEXBNS,

B
™2 +g-1)-2 ifi=j=
Pl =Pl = e 2" - 1) if2<i=j<}
2g?m-2 f1<i<j<}
o ph = {<2q"‘-' ~)@t D) i 2<i=k<d
2™ (g™ + 1) f1<i<$2Sk<S S ik

2<i, k<DL i,k OBUHIZHKD

(=t 2qmt +1)
™2™ - 1)
P = 2"+ )
2q™"} (g™ - 1)
2q2m—2

LR23B,
Proof. SFMHBE 5D THET B, O

HE1 »HELICKOMEABONS,
8 2. X(GOs(q), My(q)) PEREKE by LT3, DL &

=20 (g™ = 1) + g™ b}, +2) -2
pli=ph =2 g™ =) +q™ b+ 1) -1 for 2<i<

BO1<ij,k< § HLTI
ol =20 g™ = 1) + g™

Eied,
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Proof. B&,

X(GOs(q),Na(q)) DT P = (5;(i)) KDL S IR Eh 3 (cf. [8, §3)).

1 2(g-1) (g-1) (¢-1) ... (g=1)]
1 ¢g-3 -2 -2 =2
. 1 -2
P=1, 2
: (Xa’j)zgi.jsg
1 -2

B2 1. X(GO2ms1(9), Vams1 (g) DISER P = (p;(i)) RKTE A 6B,

1 (@™ +1)@™-1) ¢™'g™~1) ¢ -1)
1 (g—2)¢™! -1 —2¢m-! —2¢™-}
1 =™ +1)
P=1, —(g™'+1)
: : (9™ xij)agii<y
L1 =(g™'+1)
TiRbb

Poli) =1 for0<i<$

pi(0)=k; for0<j<$

@) =¢™ ' pi()+¢™ " -1 for1<i<
pi()) = ¢ 'p;(i) forl<i<$, 2<5<4

Proof. #iff2 & LOMEXLAVT

Po(a) Po(a)
B; P (:a) = p;(a) P fa) for all j,
3(a) g(a)

ERE ARV (cf. Bannai-Ito [3, §2.5], Bannai-Hao-Song [2, §6]).

. g™ g™ -1) ]

_2qm—l

0

EE 1L, 2(GOms1(g), Vams1(q)) PEWERIC g™ — 1 LW S EREET I LIZLY
X(GO0s3(9),3(q)) DHEFERMRBONDZ LEEBL TS, £/, V D negative-type hyper-
pla.n&e DEEOMEE O = 92m+l (q) ExTLE. I(G'Og,,....;(q). 02..,+1(q)) 21 Thhe
FUEORERMR Y o, 73 HFEHKNHAIL Bannai-Hao-Songl2, §6.§7) IoRV TEEIZHE~<6
nTHY, MROHHE2RUCERLIL 2] DLW THDI I LEHFEIWATH, &b
X(GO1m+1(9), O2m+1(q)) PHIIRIE X(GO2m+1(q), Vam+1(g)) PHRFIZ g™ 4= g™}
EWIHIEREBTLICEVBohBZLLREND (f Bannai-Kwok-Songld]), H#H it
Dom+1(q) B Oamai(q) 2 2 0HMELEDO~Z AEMIZAY SREOHELEL R T
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8, ENOHORER (T2LLBERKR) XARTMIZ Qi(g) (XX O3(q) ) DEREHKIZLD
controll ENTWBZ Lized, ZOBRRBERIIBOBL RBECRVTLAHERD Z Lt
MHHATVWS, (3L < it Bannaill] £8/.)

SIETiH g EAELTEATV N, KOBRIL ¢ BARD #-TI/FANRRDB) §
SR IBERRETRTLOTHS,

B 2. X(GO2m+1(9), GO2m+1(9)/GOF,(q)) 1t X(GO3(g™),GO3(q™)/GOZ (q™)) @ sub-
scheme TH 3,

Proof. ZOERITKODTHER
GOzm41{q) D GO%,.(9)

U U
GOs(g™) > GOF(¢™)
kU
GOs(¢g™) N GO3,.(q) = GOF(a™)
ERTIERKVEPRD, TRDY

m m 1
|GOz2m+1(g) : GOF(g)] = [GO3(a™) : GOF (a™)] = %
LY. GO2m+1(9)/GOT, (q) DI GO3(q™)/GOF(q™) PTE 13 LICHRELTWDH I M
Shd, 0

[EHRIZ LT X(GOzm+1(a), GO2m+1(9)/GO;,,(g)) 3% X(GO3(g™),GO,(¢™)/GO7 (¢™)) @
subscheme TH3H T & LIEAE D,

de Caen - van Dam(5] IRV T, %(GOs(q),GO0s(q)/GOF(q)) & (q HBHD L %) AR
7% association scheme X(PGL(2,q), PGL(2,q)/Da(q—1)) BERENTEY, TOPTHLIT
Z O association scheme @ subscheme 22V C, g =4"(r2>2) DL &7 TR 4 OHHYE
subscheme (BRU'ZhNb6BLNE7 T X3 & 20 subschemes ) MIFETSHZ L ERML,
F DOz Johnson scheme J(q + 1,2) % Frobenius T ar— of I[ZX D IBEENDZ V<
A ® subschemes % BkiTE sporadic 2L DLUARFELR2VETFALE, ZER2IZOFRIC
12DOMEFEELXD, AL qg=64=2% ML &, I association scheme ® subscheme It

o Johnson scheme J(65,2) : 77 X2

o Frobenius B : #5220 (¢=82%), 12 (g=4%), 8 (¢=2%)

o deCaen-vanDam B : 7724, 3, 2

o EH21ZE V6N D subschemes : 27524 (g=8%), 2 (g=47)

Ei2D, FIZ 2 5D subschemes N@M S iz, 233 EIZET I subschemes D PICT F A
ABILLONHIN, ZhHIETRAERS, T2 2 TLTO subschemes NET LA TVD
ERRG A2V,
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Enumerating surface branched coverings*

Jin Ho Kwak

Combinatorial and Computatlional Mathematics Center
Pohang University of Science and Technology, Pohang, 790-784 Korea

Jaeun Lee

Mathematics, Yeungnam Universily, Kyongsan, 712-749 Korea

Abstract

The number of nonisomorphic n-fold branched coverings of a given closed sur-
face can be determined by the number of nonisomorphic n-fold unbranched cov-
erings of the surface and the number of nonisomorphic n-fold graph coverings of
a suitable bouquet of circles. Also, a similar enumeration can be done for regular
branched coverings. Some explicit enumerations of them are also possible.

Keywords: Surface branched coverings, graph coverings, enumerations

1 Introduction

Throughout this paper, a surface S means a compact connected 2-manifold without
boundary. By the classification theorem of surfaces, S is homeomorphic to ane of the
following:

S, = the orientable surface with & handles if k>0,
¥~ 1 the nonorientable surface with — k crosscaps if k < 0.

A continuous function p : § — S from a surface § onto another surface S is called
a branched covering if there exists a finite set B in § such that the restriction of p to
§-pY(B), Pls—p-1(3) : :§ —p~'(B) = S — B, is a covering projection in the usual sense.
The smallest subset B of S which has this property is called the bdranch set.

A branched covering p : § — S is regular if there exists a (finite) group A which
acts pseudofreely on § so that the surface S is homeomorphic to the quotient space S/.A
say by h, and the quotient map § — §/.A is the composition A o p of p and h. We
call it simply a branched A-covering. In this case, the group .A becomes the covering

*Supported by Com?*MaC-KOSEF.
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transformation group of the branched covering p : § — S. Two branched coverings
P:S > Sand g:8 — S are isomorphic if there exists a homeomorphism h : S — §’
such that p=gqoh.

Recently, Kwak et al. [8, 11] examined which surface can be a branched .A-covering
of a given surface with a given branch set when A is the cyclic group Z, or the dihedral
group D, of order 2p, p prime.

In this paper, we enumerate the total number of nonisomorphic (regular) branched
coverings of any given surface S with a branch set B.

2 A classification of branched coverings

Let G be a finite connected graph with vertex set V(G) and edge set E(G). We allow
self-loops and multiple edges. Notice that G can be identified with a one-dimensional
CW complex in the Euclidean 3-space R so that every graph map is continuous. Every
covering of a graph G can be constructed as follows (see [3]).

Every edge of a graph G gives rise to a pair of oppositely directed edges. By e™! = vu,
we mean the reverse edge to a directed edge ¢ = uv. We denote the set of directed edges
of G by D(G). Each directed edge e has an initial vertex i, and a terminal vertex t,.
Following [3], a permutation voltage assignment ¢ on a graph G is amap ¢ : D(G) = S,
with a property that ¢(e™!) = ¢(e)~! for each e € D(G), where S, is the symmetric
group on 7 elements {1,...,n}. The permutation derived graph G* is defined as follows:
V(G*) = V(G) x {1,...,n}, and for each edge e € D(G) and j € {1,...,n} let there be
an edge (e, j) in D(G?) with i j) = (i, j) and ¢(j) = (t, #(e)s). The natural projection
ps : G® = G is a covering. In the derived graph G?, a vertex (u,i) is denoted by u;,
and an edge (e,j) by e;. Let A be a finite group. An ordinary voltage assignment
(or, A-voltage assignment) of G is a function ¢ : D(G) — A with a property that
d(e~!) = ¢(e)~! for each e € D(G). The values of ¢ are called voliages, and A is called
the voltage group. The ordinary derived graph G x4 A has as its vertex set V(G) x A
and as its edge set E(G) x A, so that an edge (e, g) of G x4 A joins a vertex (u,g) to
(v, ¢(€)g) for e = uv € D(G) and g € A. In the ordinary derived graph G x4 A, a vertex
(u,g) is also denoted by u,, and an edge (e,g) by e;,. The first coordinate projection
Ps : G x4 A — G, called the natural projection, commutes with the left multiplication
action of the ¢(e) and the right action of .A on the fibers, which is free and transitive,
so that p is a regular |A|-fold covering, called simply an A-covering.

A (branched) covering of a surface is closely related to a graph covering which is
embeddable into it. To see such a kind of relation, we first review a graph emdedding
into a surface.

An embedding of a graph G into a surface § is a continuous one-to-one function
2 : G — S. If every component of S — #(G), called a region, is a homeomorphic to an
open disk, then 1 : G — S is called a 2-cell embedding. An embedding scheme (p, A)
for a graph G consists of a rotation scheme p which assigns a cyclic permutation p,
on N(v) = {e € D(G) : the initial vertex of e is v} to each v € V(G) and a voltage
assignment A which assigns a value A(e) in Z3 = {-1,1} to each e € E(G).

—127—



Stahl [15] showed that every embedding scheme determines a 2-cell embedding of G
into an orientable or nonorientable surface S, and every 2-cell embedding of G into a
surface S is determined by such a scheme.

Let 2 : G — S be a 2-cell embedding with embedding scheme (p, A) and let ¢ be
a permutation voltage assignment. The derived graph G has the derived embedding
scheme (B, A), which is defined by 5, (e:) = (ps(€)): and A(e;) = A(e) for each e; € D(G?).
Then it induces a 2-cell embedding of G* into a surface, say 7 : G® — S?, such that the
following diagram

¢b —— §¢

P¢l l Do

G —*— 8

commutes. Moreover, if G? is connected, then S? is connected and fy : S* = S is a
covering possibly having branch points. Conversely, let p: § = S be a branched n-fold
covering of a surface S. Then there exist a 2cell embedding 2 : G — S of a graph G
such that each face of the embedding has at most one branch point interior of it and a
permutation voltage assignment ¢ : D(G) — Sy, such that the branched n-fold covering
Po : 8% = S is isomorphic to the given branched covering p: § — S [4).

A surface Sy can be represented by a 4k-gon with identification data H 1 85,07 1571
on its boundary if k > 0; bigon with 1dent1ﬁcat10n data aa™! on its bounda.ry ifk=0;
and —2k-gon with identification data [];%, a,a, on its boundary if & < 0.

Let B be a finite set of points in S;. We note that the fundamental group 7, (Sx—B, *)
of the punctured surface S — B with the base point * € S, — B can be presented by

|B]
<a1,...,a;,,b|, s g, C1y . -»CB| ; HG, 3G, lb_lHq—l> if k>0

s=1

18|
<a1,---,a-k,cl, - Ha.a.Hq—l> if k <0;

a=l1

L
<c1,...,c|3|; Hq=1> if k=0.
t=1

We call this the standard presentation of the fundamental group (S, — B, *). For each
t=1,2,...,|B|, we take a simple closed curve based at  lying in the face determined by
the polygonal representation of the surface Sy so that it represents the homotopy class of
the generator c;. Then, it induces a 2-cell embedding of a bouquet of m circles, say B,
into the surface Sj such that the embedding has |B| 1-sided regions and one (| B| + 4k)-
sided region if kK > 0; |B| 1-sided regions and one (|B| — 2k)-sided region if £ < 0;
and | B| 1-sided regions and one | B|-sided region if k = 0, where m is the number of the
generators of the standard presentation of the corresponding fundamental group. We call
this embedding 1 : B,, — S the standard embedding, simply denoted by B,,— S;— B.
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For example, Figure 1 illustrates the standard embeddings of bouquets with |B| = 3.
Figure 1(a) represents the standard embedding 97+ S;— B and (b) does the standard
embeddmg Bs— S_3— B.

(a.) %7'—) Sz—B (b) %3H S_3—B

Figure 1: Two examples of standard embeddings

For a natural number n, let C'(B,;n) denote the set of all permutation voltage
assignments ¢ : D(%B,,) — S, on the bouquet of m circles B,,. Notice that C'(By,;n)
can be identified with the cartesian product (S,)™ of m copies of the symmetric group Sy,
i.e., each element ¢ in C!(By,; n) can be identified with an m-tuple (¢(4,),...,¢(¢,)),
where ¢; is a positively oriented loop in D(%B,,). For convenience, let a; = 2k if k > 0,
and ax = —k if k < 0. Let C*(%Ba,+18— Sk — B;n) (resp. C'(Ba,+/5 > Sk — B; A))
denote the subset of (S,)%+B! (resp. of (A)**Bl) consisting of all (ax + |B|)-tuples
(01,...,0a,4)8)) Which satisfy the following three conditions:

(C1) The subgroup < o1,...,0a,+|5 > generated by {1,...,04,4p} is transitive on
{1,2,...,n} (resp. is the full group A), and

(C2) (i) if k> 0, then
18]

k
-1 -1 —
I |0i0k+i05 UH,-I |0'2k+|‘ =1,
i=1 i=1

(ii) if k£ < 0, then
-k 18]

HaiaiHO'-k-H =1,

i=1 i=1
(C3) 0i# 1 foreach i =ax +1,...,ax +|B|.

Note that condition (C1) guarantees that the surface S? is connected, and conditions
(C2) and (C3) do that the set B is the same as the branch set of the branched covering
Ds : 8¢ — S. By using a similar method as in [8], we can obtain the following theorem.
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Theorem 1 (Existence and classification of branched coverings) Every permutation
voltage assignment in C'(B,, 415 <> S — B;n) induces a connected branched n-fold
covering of Sy with branch set B. Conversely, every connected branched n-fold covering
of Sy with branch set B can be derived from a voltage assignment in C'(Ba, 4|5 < S —
B;n). Moreover, for any given two permutation voltage assignments ¢, € C'(Ba, +18
S — B;n), two branched n-fold surface coverings py : 5% = S and py : S¥ —= S are iso-
morphic if and only if two graph coverings p, : !th 48| —* Bay+p and py : ‘Bf‘ +g =
Ba, +|B| are isomorphic. It is also equivalent to say that there ezists a permutationo € S,

such that
Y(l) = od(&)o™
for all & € D(B,, i), wherear =2k if k>0, and ax = —k if k < 0. a

For a finite group A, let S4 denote the symmetric group on the group elements of A.
It gives the (left) regular representation A — S4 of A via g — L(g), the left translation
by g on A. Clearly, this representation is faithful and the group A can be identified
with the group of left transformations L(g)’s: A = {L(g) | g € A} (Cayley Theorem).
Notice that a permutation voltage assignment ¢ : D(G) — S having its images in A
can be considered as an .A-voltage assignment of G, and for such a voltage assignment
¢, the permutation derived graph G is nothing but the ordinary derived graph G x4 A.
By using this fact, Kwak et al. showed the following.

Corollary 1 [8](Existence and classification of regular branched coverings) Every or-
dinary voltage assignment in C'(B,, 45| = Sk — B; A) induces a connected branched
A-covering of S with branch set B. Conversely, every connected branched A-covering
of S with branch set B can be derived from a voltage assignment in C' (B, 415 Sk —
B; A). Moreover, for any given two voltage assignments ¢,9 € C‘(!B,,.+|B|*—) S-B; A),
two branched A-coverings y : S* —+ S and fy : S¥ = S are isomorphic if and only if
two graph coverings py : B, 48] X¢ A = Ba,+ip| and py : By, 45 X9 A = By, 48| are
isomorphic. It is also equivalent to say that there ezists a group automorphism o of A

such that
V(&) = o (¢(4&))
for all &; € D(B,,+p)), wherea =2k ifk >0, and a, = —k if k < 0. a

3 Computational formulas

In this section, we derive some formulas for enumerating the isomorphism classes of
surface branched coverings.

We define an Sp-action on the set C!(B,;n) by a simultaneously coordinatewise
conjugation, that is, for any g € S, and any (01,...,0m) € C}(Bpn,; n),

g (01,---y0m) = (90197%...,90mg™").

It follows from Theorem 1 that two voltage assignments in C*(B,,4)5) < Six — B;n)
derive isomorphic branched coverings of S; if and only if they belong to the same orbit
under the Sy-action. Hence we have the following.
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Lemma 1 Let k be any integer and let B be a finite subset of the surface Sy. Then
the number of nonisomorphic connected n-fold branched coverings of the surface Sy with
branch set B s

Isoc (Si, B;n) = |C'(Ba,+18)<* Sk — B;n)/Sa|. .

Now, we aim to express the number Isoc (S, B;n) in terms of known parameters.
Let €(B,; n) denote the set of all m-tuples (04, ...,0m,) in (S;)™ such that the group
<01,...,0m> generated by {0),...,0m} is transitive on {1,2,...,n}, that is,

€(Bm;n) = {(01,02,...,0m) € (Sa)™:<01,02,.-.,0m> is transitive on {1,2,...,n}}.

Then €(B; n) contains all representatives of connected n-fold coverings of the bouquet
of m-circles B,, and the number Isoc (Bn; n) of nonisomorphic connected n-fold cover-
ings of B, is equal to |€(By,; n)/Sy|, where the S,-action on €(Bny;n) is also defined
by the simultaneously coordinatewise conjugation (see [9, 10]).

Lemma 2 Let k be an integer and b a nonnegative integer. For each0 <t < b, let

S(k,b,t) = {¢ € (Sa)**® : ¢ satisfies (C1), (C2) and 0y =1, Yi=ar +1,...,0x+1 },
where ¢ = (01,03, ...,0,,43). Ift = b, then the set S(k, b, b) is equal to the set C'(B,, —
Si;n), and if t # b, then there is a one-to-one correspondence between the sets S(k,b,t)

and €(B,, +b—t—1;n). Moreover, the correspondence preserves the S,-action on the both
sets which are defined by simultaneously coordinatewise conjugacy.

Proof: The case of ¢t = b is clear. Assume that £ # b. Then every element in S(k,b,t)
is of the form (01,...,04,,1,---,1,00,4t+1,- - -1 0ay+s). It comes from conditions (C1)
and (C2) that the function f : S(k,b,t) = €(B,, +s-¢-1; n) defined by

f(al) ceeyOgpr 1)° . -)lyo'ah+¢+h' . :o'al.+b) = (61)' ++100,1 0y 4t41y 0 o+ )o’orl-b—l)

is well-defined and bijective (Note that the function f is defined by deleting 1's and the
last coordinate). This completes the proof. a

Theorem 2 Let k be any integer and let B be a b-subset of the surface Sx. Then the
number of connected n-fold branched coverings of the surface Sy with branch set B is

Isoc (S, B;n) = (—1)%Isoc (S, §; n) + :V:‘:(—l)' (g)lsoc (Bay+b-t-137),
=0

where B,, is a bougquet of m circles, ap =2k if k>0, and ax = -k ifk <0.
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Proof: Foreachi=a;+1,...,a;+b, let P; be the property that the i-th coordinate
of an element of (S,)2*® is the identity. For each subset S of {a;x +1,...,ax + b},
let N(Ps) be the number of elements in the product (S,)?**® which satisfy conditions
(C1), (C2) and the properties P; for all i € S. Notice that N(P,) is the number of
all elements in the product (S,)**® which satisfy conditions (C1) and (C2), and that
the set C'(B,,+5— Sk — B;n) is equal to the set of elements of (S,)%+® which satisfy
conditions (C1) and (C2), but not any other property P; for i =ax +1,...,ax +b. It
comes from the principle of inclusion and exclusion that

b
|C*(Bassv Sk — Bin)| = ) (1)} > N(Ps)
t=0

SClap+1,....05 40}
181=¢

Since N(Ps) = N(Ps) for any two subsets 5,5’ of {ax +1,...,a; + b} with the same
cardinality, we have

Z N(Ps)

SC{c.-i-l.....c.-!-b}
IS|=t

= (g) |{¢ € (Sn)ﬂh'*'b : ¢Sati3ﬁﬁ (Cl), (CZ) and 6; =1, Vi = ar+1,...,a+1¢ }l .

Now, it comes from Lemma 2 that

b-1
|C* (B, +v— S — B; n)| = Z(—l)‘(g) |€(Boy40-t-1;7)| + (1) |C(B,, = Sk m)| -
=0

By taking the S,-action on the underlying sets of the both sides of this equation, we
have

b-1
Isoc (S, B;n) = (—1)*1soc (Sk, &;n) + Z(—l)‘ (lt’) Isoc (B, +5-t-1; 7)- u}
=0

The number Isoc (G;n) was computed for any graph G and any natural number
n by Liskovets [12] and the authors (See [10]) with reductive formula, and the number
Isoc (S, §; n) was computed for any k and n by Mednykh (see [13, 14]). In fact, Mednykh
computed the number of conjugacy classes of subgroups of index n in the fundamental
group 7 (S, *) of a surface Sg which is equal to the number Isoc (Sy, @; n).

For convenience, let B(n) denote the set of all partitions of the natural number n, i.e.,
the set of unordered sequences [n17n; - - - ng] of natural numbers such that n,+- - -+n; = n.
For a partition p of n, let jx(p) denote the multiplicity of £ in the partition p, so that
51(p) +242(b)+ - - - +njn(p) = n. A partition p of n is denoted by [[k; £]] if every term of
p is k. Note that [[k; m]] denotes the partition of the natural number km each of whose
terms is k.
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Theorem 3 [10] For n > 2, the number of nonisomorphic connected n-fold coverings
of B, is

Isoc(Bm;n) = > (G +1)m™t-1)
L4284 (n=1)n—1=n-1
x (&1288,! -+ (n—1)t-1g, )™

+ Y (2230t )™
2034343+ tnép=n

Ju(p)-1
- Z H (3;(1')—)' H (Isoc (iBm;k)+l)) ,

€ B(n) - ) 7 0 =0
PEBM .!.'1,"' 0 u(p)#

where the summation over the empty indez set is defined to be 0.

Theorem 4 (13],[14] The number of nonisomorphic connected n-fold unbranched cov-
erings of a surface Sy of genus k is

(LS 8u(m) Y s () a2 if k> 0,
s T (md)
Isoc (Si,8n) =< 1 B\ k-2)mtl - +
NI () d*2™1((2, s (m) + d S} (m)]
‘ " if k<0,

where Sy(m) is the number of subgroups of indez m in the fundamental group =, (Si, *)
of a surface S; of genus k, u(m) is the Mobius function, S} (m) = 0 if m is odd,
and S} (m) = Sp(R) if m is even, Sy (m) = Sx(m) — SF(m), and (2,d) is the greatest
common divisor of 2 and d. In fact, the number Sy(m) is given as follows:

m (__1)e+1
Si(m) =’"Z% > Bubye-Bu
=1 h +ia +-:- (.Z=l- m

B \® 2% -2 if k>0,
ﬂ”‘z(m)’ t_{ k-2 ifk<o,

A€Dy

where

Dy, is the set of all srreducible representations of the symmetric group Sy, and f» is the
degree of the representation A.

As an illustration of Theorem 2 we compute explicitly the number of nonisomorphic 3-
fold branched coverings of the orientable surface S, (k > 0) with branch set B (|B| = b).
It was known that Isoc (Bpm;3) = 6™ ! 4+ 3™~! — 2™~ ([10]) and Isoc (Si,@;3) =
2.6%-2 4 4.-3%-2_2.2%-2 ([13]). Now, by applying Theorem 2, we have

Isoc (Si, B;3) = 6272 (8% + (=1)°) + 3%7% (2° + (-1)’3) — 22 (1 + (-1)").
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Next, we aim to compute the number Isoc?(Sy, B;n) of nonisomorphic connected
regular n-fold branched coverings of a surface S; with branch set B. To do this, we define
an Aut (A)-action on C'(®B,; A) as follows: For any o € Aut (A) and any (gy,...,9m) €
C'(Bpm; A), define

o (gh e )gM) = (a(gl)! o ,O’(gm)).

Then it follows from Corollary 1 that two voltage assignments in C* (B, ;51— Si—B; A)
derive isomorphic branched coverings of S if and only if they belong to the same orbit
under the Aut (A)-action. Notice that this Aut (,A)-action on C!(%B,, 415/ Sx — B; A)
is free because {gy,...,9s,+5} generates A. It implies that the number Isoc (S;, B; A)
of nonisomorphic connected branched .A-coverings of the surface S; with branch set B

is

|C‘(’Ba,,+|3|=+ Sk — B;A)l
|Aut (A)] '
It also follows from Corollary 1 that any two connected regular branched coverings
are not isomorphic if their covering transformation groups (or voltage groups) are not
isomorphic. Now, the following comes from the fact that every connected regular n-fold

branched covering is isomorphic to a connected branched .A-covering for some group A
of order n.

Isoc (Sy, B; A) =

Theorem 5 Let k be any integer and let B be a finite subset of the surface S;. Then
the number of nonisomorphic connected regular n-fold branched coverings of the surface
Sy with branch set B is

C(By, +j8— Sk — B; A)]
IsocR (S, B:m) = 5~ 1O Bartia i = " 1soc (54, B;
soc™(Sg, B;n) EA At (A) > soc (S, B; A),
where A runs over all representatives of isomorphism classes of groups of ordern. O

By Theorem 5, we now need to compute the number Isoc (S, B; .A) for each finite group
A of order n. By using a method similar to the proof of Theorem 2, we can have the
following theorem. '

Theorem 6 Let k be any integer and let B be a b-subset of the surface Sy. Then, for

any finite group A, the number of connected branched A-coverings of the surface S, with
branch set B is

5-1
Isoc (Sy, B; A) = (—1)’Isoc (S, §; 4) + Z(-—l)* (lt’)lsoc (Bayt-t-1; A),
t=0

where By, is a bouquet of m circles, axy =2k if k > 0, and ay = —k ifk < 0. (=}
An explicit computing of the number Isoc (Bn;.A) was done for any m and any

finite abelian group .A or any dihedral group D), of order 2n (See [7]). But the number
Isoc (Sk, 0;.A) has been known only when A is Z, or D}, for a prime p (see [8, 11]).
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Let A=A, ® A; with (|A4,|,|Az]) = 1. Then
|C'(Ba,+i81 = Sk — B; A)| = |C'(Ba,+18| = S — B; A1) - [C(Bo, 51— Sk — B; A2)|

and |Aut (A)| = |Aut (A,)] - |Aut (Az)]. Now, the following comes from this fact and
Theorem 5.

Lemma 3 For eny finite groups A and B with (JA|, |B|) = 1 and for eny surface S,
we have

Isoc (Si, %; A @ B) = Isoc (S, §; A) - Isoc (S, §; B).

Now, we may compute the number Isoc (S, #; .A) for any abelian group A. Let A be
an abelian group. If £ > 0 and B = @, then conditions (C2) and (C3) in the definition
of the set C!('B,, — S;;.A) are satisfied clearly, so that Isoc (Si; ; A) = Isoc (Ba; A),
which was computed already in [7). If ¥ < 0 and B = @, then C'(%B,, — Sj; A) is equal
to the set of —k-tuples (g1, ..., 9-x) with the properties that {g,,..., g} generates A
and (1)?- - - (9-x)2 = 1. For convenience, let

S(B_x; A) ={(91,92,.-.,9-k) €A™ : {91,2,.-.,9-4} generates A and (9_4)* = 1}.
We define a function f : C!(B,, < Si; A) = F(B_i; A) by

f(gh"'ag—k) = (911' cerg—k-1, 91" 'g—k)‘

Then f is well-defined because (g1)?--- (9-&)% = (g1 -+ g-&)? in the abelian group A.
Now, it is not hard to show that f is a bijection. Hence we have

Isoc (Sk, 0; A) = [C'(B,, = Si; A)| / |Aut (A)] = |F(B_k; A)| / |Aut (A)].

By the classification theorem of finite abelian groups, we can express a finite abelian
group A as follows.

A = -Ao ® A¢ = ($g=l e"‘=1 rn‘Jprﬁ) @ ($£=lmkz2'b) ’

where p; are odd primes and p; # py if i # i'. Let 6(.A) denote the number of direct
summands of A whose orders are multiples of 4 and w(.A) denote the number of direct
summands of A whose orders are 2. For example, Zs®Zs = Z3DZ2DZs, 6(ZsDZg) = 1
and w(Zg®Zg) = 1. Clearly, (|A,|, |Ae|) = 1 for any abelian group A and, by Lemma 3,
Isoc (S, 0; A) = Isoc (S, 8;.A,) - Isoc (S, @; A.). Notice that the order of A, is odd.
In an abelian group of odd order, g = 1 implies g = 1 and hence F(B_;;Ap) =
|€(B_-k-1; Ao)|- Now, using Lemma 3 and a computational method similar to lemma
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3.3 in [7], one can obtain
[§(B-k; A)|
9=k _ 98(4)
T2k~ 1)2Th (D)

|€(B-k-1; Ao) || €(B-1; Ae)

[ 90(A) (g-4-004) _ 1)

2-k—(0(A)+w(4)) — 1
9~k _ 90(4)

(2-% — 1)2T iz malts-1)

|€(B_k—1;4)| if 0(A) +w(A) < -k,

|€(B_k—1; A)|[€(B-s; Ac)| if O(A) + w(A) = —k
and 0(A) # —k,

L 0 otherwise.
We summarize our discussions as follows.

Lemma 4 Let S; be a surface of genus k and let A be any finite abelian group. Then
we have the following.

(a) If k 2 0, then Isoc (Si, @; A) = Isoc (Ba; A).
(b) If k<0, then

Isoc (S, 9; A)

[ 24 (-804 1)
2-*~(0CA(A) — |

9-k _ 98(A)
(2-% - 1)22‘:..—.; my(ts—1)

Isoc (B_g-1;4) if 0(A) + w(A) < —k,

Isoc (B_g-1; Ao)Isoc (B_x; A,)
if 0(A) + w(A) = —k and 8(A) # —k,

—

0 otherwise,

where A = -Ao 2] Ae = (e:=1 @;‘=1 ”Q,Zpl‘,) @ (®£=1me2ll,) . a
]

Corollary 2 Let S; be any nonorientable surface and let A be any finite abelian group.
Then we have the following.
(a) If A does not contain Z; as its direct summand, then

2% A%soc (B_x-1;4) if 8(A) < —k,
0 otherwise.

Isoc (Si, % A) = {

In particular, if the order of A is odd, then Isoc (S, @; A) = Isoc (B_g_1; A).
(b) If A is mZ,, then Isoc (Si, §; mZy) = Isoc (B_x; mZ,). a
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4 Explicit enumerations of some regular coverings

Recall that one can enumerate the total number of connected n-fold branched cover-
ings of a surface by Theorem 2, but it is not easy to enumerate explicitly the number
Isoc®(Sy, B;n) of regular n-fold branched surface coverings of a given surface S with
branch set B. In this section, we compute the number Isoc?(S, B;p), Isoc?(Sk, B; 2p)
or Isoc®(S,, B; p?) for any prime number p, as possible cases.

First, we compute Isoc®(S;, B;p) for any prime p. It was known [7] that for any
prime p, Isoc (Bp; Z,) = 1’:_—“11 Since every group of order p is isomorphic to the cyclic
group Z,, it comes from Theorem 5 that Isoc®(S;, B;p) = Isoc (Sy, B; Z,) for any k
and any finite subset B of S;. Now, by applying Theorem 6, Lemma 4 and Corollary 2,
we have the following.

Theorem 7 Let B be a b-subset of o surface Sy and let p be a prime. Then the number
Isoc®(Sy, B; p) of nonisomorphic reqular connected branched p-fold coverings of S with
branch set B is

-1 ifk>0and b=0,
p—1
P! ((p - 1)~ 4 (~1)%) ifk>0and b#0,
9-k _1 ifk<0,b=0and p=2,
IsocR(Sk,B;P)=ﬁ
k-1 (1 4+ (-1)Y) ifk<0,b#0and p=2,
—k—1 __
p— -1 ifk<0,b=0and p#2,
p—1
k pFYp — 1)t ifk<0,b#0and p#2.

Notice that Isoc (Sk, B;Z,) was already computed in [8], but the computational
method in [8] is different from that in this paper.

Next, to compute Isoc? (S, B; p?) for any prime p, we recall that every finite group
of order p? is abelian and is isomorphic to Zy2 or Z, X Z,. It was known [7] that for any
prime p,

) _pml—pmt . _pP - p+1) +1
Isoc(Bpm; Zy) = -1 and Isoc(Bpy;Z, DZ,) = F-Do-1 .
By Lemma 4 and Corollary 2, we can have

¢ k-1 _ 2k-1
P ks,
p—1
Isoc (Sg, 0;Z,) = ¢ 27%-2_ 9kl jfk<Oandp=2,
p2k-3 _ p-k-2
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and

¢ p4k—l _p2k_1(p + 1) +1
P -1p-1)

if k >0,

3 ifk<0and p=2,
p—2k—3 - p—k—Z(p + 1) +1

{ (r* - 1)(p-1)

By using these formulas and Theorems 5 and 6, we have the following theorem.

ifk<0andp+#2.

Theorem 8 Let B be a b-subset of the surface S;. Then the number Isoc®(Sy, B;4) of
nonisomorphic regular connected branched 4-fold coverings of Sy with branch set B is

r%(24k+1+1)_22k iszowdb:o’
Isoc®(S;, B;4) = ¢ 2%-1[9% (31 + (-1))) = (1 + (-1)%)] if k> 0andb#0,
';'(5'2'2““’““1)—2“" if k<0andb=0,

[ 2751 2751 (237 + (-1)%) — (1+(-1)*)] ifk<Oandb##0.

Theorem 9 Let B be a b-subset of the surface Si and let p an odd prime. Then the
number Isoc®(Sy, B; p?) of nonisomorphic reqular connected branched p*-fold coverings
of Sy, with branch set B is

ISOCR(S,,, B; p2)

. (ka(;:::))(l(inklgl) ifk>0and =0,

_ ) 55;Wﬁ4?“0”@+n“”—n+04r@“—n]ﬁkgOMmb¢m
e _:p; 1)1()1::_-11)_ 1) if k< 0aund b=0,
(P75 o= 1)"2 p*(p+ 1)1 1) if k <0 and b#0.

Finally, we compute Isoc®(Sy, B;2p) for any odd prime p. Recall that every finite
group of order 2p (p is odd prime) is isomorphic to the cyclic group Zgp, = Z3 X Z, or
the dihedral group I),. It was known [7] that for any odd prime p,

(2p)" —p™ = 2"+ 1
p-1

Isoc (Bm; Zyp) =

and

2-@pmt—pml—om 41

Isoc (Bpm; Dp) = -1
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By Lemmas 3 and 4, and Corollary 2, one can have

2k __ — 92
(2p) :’_’_‘1 2% 4 1 k>0,
Isoc (S, 8; Z,p) =
. (9p) k-1 — p=k-1 _ o~k
cHC Rl i w3 S

The number Isoc (S, @; ;) was known as follows (see [11]).
4. (2p)2k-2 - p?J.'—Z -4 22):-2 +1
p-1
4-(2p) 2 —p*2(p-2)~2"%+1
p—-1
Now, the following comes from these facts and Theorems 5 and 6.

ifk>0,
Isoc (Sk: m; DP) =
ifk<0.

Theorem 10 Let B be a b-subset of the surface Sy and let p be an odd prime. Then the
number Isoc™(Sy, B; 2p) of nonisomorphic regular connected branched 2p-fold coverings
of Sy with branch set B is

Isoc®(Sy, B; 2p)
¢

ﬁ (2* - 1) (0* + ™ * - 2) if k> 0and b=0,

EF T -1+ 1)+ (-1 @ -+ 1))

2 (1+(-1)") —p* 2 [(p—1)""(p+1) +(~1)’p] ifk>0andb#0,

= { p- 1
;1—1 2* (! -1)+2(*?-1) (2" -1)] ifk <0and b=0,
9-k-lp-k-2 , .
— -1 (@1 + (1)) e+ 1)
-24(;’:—(1_1)1’) —p 52 [(p—1)*"Yp+1)+ (-1)’p] ifk<O0andb#0.
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1 Introduction

Lam (5] considered the following generalization of distance-transitive graphs and made
some basic theory. A connected digraph is said to be distance-transitive if, for any vertices
z,y,z’ and y’ with 8(z,y) = 8(z',y’), there is an automorphism &§ € Aut(I') taking z to z’'
and y to y'. A connected digraph I is said to be distance-regular if |{z € VI | 8(z,2) =
t and J(z,y) = j}| depends only on i,j and 8(z,y) = k, rather than the individual
vertices z and y with 8(z,y) = k. Damerell [4] introduced the concept and proved that
d = gor d = g—1. Moreover a distance-regular digraph with d = g is a coclique extension
of a distance-regular digraph with d = g — 1. Using these results, Bannai, Cameron and
Kahn [1] proved that a distance-transitive digraph of odd girth is a Paley tournament or
a directed cycle. Leonard and Nomura [6] proved that except directed cycles all distance-
regular digraphs with d = ¢ — 1 have girth ¢ < 8. In order to find ‘good’ classes of
digraphs with unbounded diameter, the condition of distance-regularity seems to be too
strong. Damerell (4] suggested a more natural definition of distance-transitivity, i.e.,
weakly distance-transitivity. In this talk, we not only introduce weakly distance-regular
digraphs and give some constructions, but discuss connections to association schemes.
Finally, we determine all commutative weakly distance-regular digraphs of valency 2.

In this talk, I' denotes a finite digraph. For any two vertices z,y € VT, define

5(31 y) = (6(::, y), a(y1 :C))

Definition 1.1 ([4]) A connected digraph " is said to be weakly distance-transitive if, for
any vertices z,y,z’ and y’ of I satisfying &(z,y) = 9(z',y’), there exists an automorphism
o € Aut(T') such that z’ = o(z) and y' = o(y).

Definition 1.2 ([7]) A connected digraph [ is said to be weakly distance-regular if
pi3(2,9) = |{z € VT | 8(z,2) =T and 8(z,y) = 7}

depends only on k,1,7 and does not depend on the choices of z and y with d(z, y) = k.
The numbers pr are called intersection numbers of I.

*Electronic mail: hsuzuki@®icu.ac.jp
!Electronic mail: wangks@lsc02.iss.ac.cn

— 41—



It is easy to see that a weakly distance-transitive digraph i lS wea.kly dlstmc&regular
A weakly distance-regular digraph I’ is commutative if p-- = p : for all 7,7,k. Let

Fi(z) = {y € VI'| d(z,y) = i}. ki = |Ti(z)| does not depend on the choice of z € VT
and k; = [[')(z)] is called the valency of T.

Definition 1.3 Let G be a finite group and S a subset of G not containing the identity
element. We define the Cayley digraph I' = Cay(G, S) of G with respect to S by

V([') = G and E(T') = {(g,39) | g € G,s € S}.

A Cayley digraph I' = Cay(G, S) is connected if and only if G = (S). It is obvious that
Aut(T') contains the right regular representation R(G) of G, and ' is vertex transitive.
The following is our main result.

Theorem 1.1 ([7]) If T is a commutative weakly distance-regular digraph of valency 2
and girth g, then ' is isomorphic to one of the following.

(1) Cay(Zs, {1,2}).

(2) Cay(2Z2 x Z,,{(0,1),(1,0)}),q 2 3.
(3) Cay(Za,{I,n=T}),n > 3.

(4) Cay(Z3,{T,g+1}).

(5) Cay(23,{(0,1),(T,0)}).

2 Constructions

Now we give another characterization of weakly distance-transitive digraphs. Let I be a
weakly distance-regular digraph. For each vertex z of I, we define

Tij(z) = {y € VT | 8(z,y) = (4,5)}-

It is easy to see that k;; = |['; j(z)| does not depend on the choice of z € VT. For vertices
zand y of [, let

P;s(z,y) = {2 € VI'| O(z,2) =i and §(z,y) = j}.

If 8(z,y) = k, then |B;(z,9)l = 'J(z ).
The proof of next proposition is similar to the one in the undirected case. (See [3].)

Proposition 2.1 A connected digraph I' with diameter d is weakly distance-transitive if
and only if it is vertez transitive and the vertez stabilizer Aul(T'), is transitive on the sets
[ij(v) for alli,j=0,1,---,d and for a fized v € VT

Example 2.1 The simplest of weakly distance-regular digraphs is a directed cycle.
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Proposition 2.2 Let G be a finite abelian group and S a subset of G not containing
the identity element. If T = Cay(G,S) is a weakly distance-regular digraph, then T is
commutative.

Proposition 2.3 Let Z,, be a cyclic group of order 2g. Then
[= Ca'Y(Z'Zga {T?-z-})
s a commutative weakly distance-transitive digraph.

Definition 2.1 Let [" be a digraph. For any integer £ > 2, we can construct a digraph
[ with vertex set
VI'={(u,i)| u€Vland 0<i<k-1}

and the arc set
ET' = {((u,i),(v,5)) | (u,v) € ET}.

The digraph [ is said to be a k-coclique eztension of . T is said to be a k-clique
extension of I if
V¥ ={(u,?)| u€ Vland 0<i<k-1}

and
ET" = {((u,1),(v,5)) [ (¢,v) € ET or u = v and i # j}.

Theorem 2.4 Let I be a weakly distance-regular digraph of girth g. Then a k-coclique
extension ['' of T is weakly distance-regular if and only if one of the following holds.

(1) There exist no verticesz and y of ' with 5(:1:,y) =(g,9).
(2) p{3” = 5% fori and j.

IfT is commutative, then [ is commutative., Moreover, if [' is a weakly distance-transitive
digraph satisfying (1), then [V is also weekly distance-transitive.

Corollary 2.5 Let Z, be a cyclic group of order n. Then the following hold.

(1) T = Cay(Za,, {1,2,2¢ + 1,29 + 2,---,2(k = 1)g + 1,2(k — 1)g + 2}) is a commu-
tative weakly distance-transitive digraph, where k,g > 2.

(2) T =Cay(Zyy,{T,g + 1,---,(k — 1)g + 1}) is a commutative weakly distance-transitive
digraph, where k, g > 2.

Theorem 2.6 IfT is a weakly distance-regular [resp. distance-transitive] digraph of girth
g 2 3, then a k-clique extension of I' is weakly distance-regular [resp. distance-transitive].

Theorem 2.7 Let [, = (X, Ey), -+,[n = (X, E,) be distance-reqular digraphs of diam-
eter 2 with the same intersection numbers. Let X = X", i.c., the directed product of n
copies of X. Two vertices £ = (2,22, ,Za), ¥ = (Y1,¥2,°* ", ¥n) € X are adjacent if
there ezists some j such that

Or,(zj,y;) = L and z; = y; for all s # j.

Then the digraph T defined above is weakly distance-regular. Moreover, [ is commutative
if I'; is commutative for some 1.
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Proposition 2.8 Let m,n be integers at least 3. If
[ = Cay(Z, x Z,,{(1,0),(0,1)})

is weakly distance-regular, then n = m = 3 and I’ is a commutative weakly distance-
transitive digraph.

Proposition 2.9 T = Cay(Z;x Z,,{(0,1), (I,0)}) is @ weakly distance-transitive digraph.

3 Connections to Assoclation Schemes

In this section, we will discuss the relations between wealky distance-regular digraphs and
association schemes.

Definition 3.1 Let X be a finite set. Let Rg, Ry, -, Rqy be relations defined on X
satisfying the following,.

(f) Ro={(z,2z) |z € X}.
(#) X x X =RyU---URgand B,NR; =0if i # 3.
(313) *R; = Ry for some i’ € {0, 1, --,d}, where ‘R; = {(z,y) | (v,2) € R:}.
(iv) For k,1,5 € {0,1,---,d} and (z,¥) € Ry,
o = {z € X | (2,2) € Ry (2,9) € B3}
depends only on h,,j and does not depend on the choice of (z,y) € Rx.

Such a configuration X = (X, { Ri}ocica) is called an association scheme of class d on X.
If p}; = ph; for all &,i,5 € {0,1,-:+,d}, X is called a commutative association scheme. If
'R; = R; for all ¢, X is called a symmetric association scheme.

For more information about association schemes we would like to refer the readers to

[2].

Theorem 3.1 Let X = (X, {Roo, Rir(1a),* s Riri)s*+s Raraty -+ s Rariaka) }) be a
nonsymmelric association scheme satisfying

‘Rij = {(z,y) € X x X |(y,2) € Rij} = R;j-

Let Aj(;i) be the adjacency matriz with respect to R;.;i) and let A = Ay .qn + - +
Arr(ik). Then the following are equivalent.

(i) Let T = (X, {Risqy U - U Ripuiny}) e a digraph. Then O(z,y) = (j,7(j.i)) if
and only if (z,y) € R; (i), i-e., [ is a weakly distance-regular digraph.
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(ii) For any non-negative integer s < d,
s ks )
A= ZZn(Jvr(]vz)vS)Aj.r(j.i)y (1)

j=01i=1

where n(j,7(j,1),s) is the number of paths of length s connecting x and y with
(z,y) € Ry and n(j,7(j,3),7) #0 forall0 < j < d and 1 <1 < k;.

(iii) For any non-negative integers j,i < d and 1 < < k;, let

GGl _ r(id)
E:’l G0 _ Z Pg,:(f.k]n.u.r(l.ml)'
1<k<ki 1<m<ky

Then plrN =0 if j—i > 2 and G0N # 0.
Corollary 3.2 Let I' be a weakly distance-regular digraph with adjacency matrices
Ao, Arr(ia)s 1 Arra)s > Adir(da)s 77 s Adir(dika)
and let A(T') be the Bose-Mesner algebra of I'. Then
d+1<dmAl) <14k -+ ks (2)

Moreover, if both equalities hold in (2), then ' is distance-regular.

4 Proof of Theorem 1.1

Throughout this section, we assume that I' is 2 commutative weakly distance-regular
digraph of valency 2 and girth g.

Lemma 4.1 [f there ezists an arc (u,v) with 3(v,u) = q— 12 g, then, foranyz € VT,
there ezist the following two circuits with only one common vertex

(I = .‘L'l,.‘l,'z,"',.‘tg) and (‘t =y11y21"'1yq)

such that } .
O(y1.¥2) = 0(yqoy1) = (1, — 1).

Proposition 4.2 If there ezists an arc (u,v) with 8(v,u) = g—1 2> g, then [ is isomor-
phic to one of the following.

(1) Cay(Z,,,{1,2}).
(2) CB-Y(Zz X ZQ’{(O’T)l(T!O)})

Lemma 4.3 If every arc is contained in a minimal circuit, then, for any z € VT, there
ezist the following two minimal circuils

(I =zhz2|"',xg) and (I =yl,y2,"',yg)

satisfying I{zz,-‘tg,yz, y_.,}| =4.
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Proposition 4.4 If every arc is contained in a minimal circuit, then ' is isomorphic to
one of the following.

(1) Cay(Z,,{I,n—T}).
(2) Ca'y(Zng {Tvg + 1})'
(3) Cay(23,{(0,1),(T,0)}).

Combining Proposition 4.2 and Proposition 4.4, we complete the proof of Theorem 1.1.

Remarks. Theorem 1.1 also holds for a weakly distance-transitive digraph.

Problems

(1) Find examples of non-commutative weakly distance-regular digraphs.

(2) Given a distance-regular graph I of even valency. Let ' be a digraph by adding
direction in Y, When is T weakly distance-regular?

(2') Given a weakly distance-regular digraph I'. Let [ be a graph by deleting the
direction of I'. When is [ distance-regular?
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Jacobi polynomials of ternary codes and generators
of the invariant ring of a group

O —BA
Com*MaC, POSTECH
Pohang, 790-784, Korea

tanabe@com2mac.postech.ac.kr

1 A4S 3y

1997 4. /NBA [5] 12 & > THED Jacobi BEXMPASHE LI, ZOBH
i Jacobi form DBAL ([1),[2]). RUHFZOBBEBOREIZALESEHAK
T%, Jacobi BHAIETNHIRE, HDWiEL 2 L L ERDOHRT —~
NWVBELEOFSICH L TERTHIIENTRTT, ZJITIRHIS MIZHD LS
ICZREEDFFD Jacobi BRAKXICHAL THON-BREB~ET, 22T
R R0 binary code (2% S EURORERIIBEIC [3] THONTWET,

Jacobi 2B L FEDOEREEOPRFRICHOVTYHICHBIZEMLTE
EET, SRUF Lon KERZ PAZEM F ORSEH C 2=k lo
BEnOREFSFLEFCET, UTMHIZCOZ LEFHELEBUVET,

@ = (ax)b = (b) € F? & i,j € {0,1,2} ILH LT, BF wt(a) :=
[{k | ax # O} & wtij(a,b) := |[{k | ax = iand by = j}| XHFHLET,
EEPBE (a,0) i= Yoo axbe XEBLET, FECIIHLTEDHRZEM
Ct:={a€F}|(a,c)=0, forallce C} 2EBLET, C=CL %Ml TH
5 C iLseli-dual THHLEFENET, a €F] LFSCIX LT z,9,u,0,w
PEHMLTHEHEN

HM-Jac(C,a;z,y,u,v,w)
= Ethoo(a.c)ywton(a.c)+wtoz(a.0)

ceC
xu™t 10{a,¢)+wtao (a,c)thl 1{a,€)+wtaz{a,c) w2 {a,c)+wtz1{a,c)

# aIZB9¥ 5 C ® homogeneous modified Jacobi polynomial &FEURE T, LA
FHABIC Jacobi EHALFFUE T, Jacobi BBRUTHBVTERELUTFOL S
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ks L.

HM-Jac(C,a; 2,9, 9, ¥, z)
_ Z ZWtoo(ac)+wtia(a.c)+win (a.c)

ceC

xyw'°‘ (a,c)+wtoa(a,c)+wtio(a,c)+wtao(a,c)+wtyy (a,c)+wtaa(a,c)
_ Z xn—wt(a+c)le(a+C)

ceC
=: Wa+C($1 y)

L 729 coset weight enumerator &PREN BB Wy c(z,y) 2B T,
Wose(z,y) 2 HH mingeowt(a + ¢) BRETEZZEICEFLET, L1t
MRoT, £TDaeF} IKH LT Waselz,y) DML,

2(C) := maxqery mingecwt(a + c)

NS ESRETE 2, U p(C) I FT = Usec{a € FT | wt(a— o) < r}
it r OR/MEIC—BT 5 D ENHBICEEAD bh, S C OEBEEE
EFRFRTWET, SXOhEHBICH L TEOEBERYRETHOEH
FHERIC RIS REL2MEDO—>TT,

LA L Jacobi &R N & 5 OHBLHEER U coset weight enumerator H575
bAEZEFRTELDIHTTIN, —MRIEZLNZ=FZIZX L TEO Jacobi
SAXENATHORERLZME T, LOLUTIERS LS ICH T sel
dual THB3HEIIBFERROH MO Jacobi ZRNICHT 2 BELBIL
MAMRRIZ2 D 4,

5 C izt L TRD MacWilliam BIDOESGHK 0 15 X9 [6),

HM-Jac(CL, a; z,y, 4, v, w)

1
= -laHM-JGC(C'a;:-'-zy,z_y‘u+v+w'u+wv+w2w,u+wzv+ww).

I Twi= VI3, 18 C 1 self-dual DIFAITIE, a € CIIHLT
mod 3 T

0=(a,a) = Lok = |{k | ax = 1}| + 22|{k | ax = 2}
= [{k | ax = 1}| + |{k | ax = 2}| = wt(a)

BRVUIDZELD wt(a) i L3 DERTHDII LAV ET, LENLT
#5 C Biself-dual CHIBEITIE HM-Jac(C, a; z,y, u, v, w) (LRDITH] L;
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& L CERENDIBETRETHLZ NS ET,

1/0 0 0
-1/0 0 O
0|1 1

0|1 o?
0]l w w

diag(l,w, 1,w, w).

1
L = —
l ﬁ

1],
w
2

OO O =

Ly :

EoIZCAR(,...,1) € F} 2 ELBAITIXITH Ly = diag(w, 1, w,1,1) T
FREIRBILBHMBTEEY, LEMSTTI %L, Ly & Ly CERENS
GLs{(C) DRABEL T B L (1,...,1) € F§ & e self-dual code C TR LT
HM-Jac(z,y,u,v,w) RRERR Clz,y, u, v, w|f DTLARVET, ZOWK
DB Clz,y,u,v, 0]l DERTERDSZETT, L) ERICITROER
1 I:iﬂéiﬁ‘ii@iﬁ {01,... ,ON,p,,... ,pm} E;ky)ij-o

G % GLy(C) DHRBABEL L, SHARCz),... ,zn] ~DOERIHT
SFREARRClz),... 2N 2BXE T, KOERBAOLATWET:

B 1 ([9] Theorem 6.8.4.) N 8D C LSRR FRFERG,,... 08 €
Clzy,...,zn]¢ L HBREOEFRFEX p1,... ,om € Clz1,... ,zn]C BIEE
LT

C[zli te izN]G = GB:’;IPIC[ah b 10"]'
BEEY S, #IZ Clzy, ... ,2n]¢ T Cohen-Macaulay & & 25,

L7222 T Clz,y,u, v, w]l RARBAOFRSARNOHDEMTE KD
TEBRRESNET, ERTELESPD L, KREN n OFFKREM Clz, y,2,)n
DEERTNCEFESTHMRTE. BE n OFFD Jacobi FHNiTETDE
EXAOCTES ZEMNHEET, 2612 C Nextremal EWVHIEEET D L.
Jacobi SEXOEHEN S y,v & w ICBIT BKREN 3[n/12] +3 £ DA SVIHR
DEBGIB X TRITHITR G20V DT C D Jacobi ZEXDFREKICHT HH#
RELNET,

L L=z, ExonBEca LTERT (61,... ,0v,01,--. 1 2Pm} %
RESIZRDZ LT L BB ET,

Remark. L) & L, TAEREIND8ED I LTL IR bR~DFiEE AW
TAEXR Clz,y,u, v, 0] DERTERDDZEBRHEE T, ThizsTL
b (1,...,1) #EATYRY self-dual code ® Jacobi ZIRAMNA 5 FEXR
<.
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2 Clz,y,u,v,w]r DERTT

EX2=2 )V FHOLEOPIZASTHAIFRBROBVRLLTVWOTUT
DEHSCEELXEELET,

T, = T,

n = V2,

T2 = V2u,

y2 = v+tw,
z = v-w

IOEEDOTCL (i=1,23) EKROFIRTL; (i =1,2,3) &b ET:

L[ 1 V2
S[A7 0
Ll = 2 H
0 \/5 21 0
0 0 -v-1
Ly = diag(l,w,1,w,w), and

L

diag(w, 1,w,1,1).

f % I-q,f;z & I-;s ﬁ‘&ﬂiﬁténéﬁ& LT, C[zl,yl,xg,yz,z]f wﬁiﬂ'éitﬁ%
ROET,

R R T

LEBE, G7:=(01,02,03) LBEET, G7idShephard-Todd[8] 2k ~>TH
HENEHEFREO—2TH D, TOMKIL 144 T, Gy DFEXRIT
Clz, 4% |63, 63,
6 z +2\/§zy3,
02 = IG - 5\/§Z3y3 - yﬁ‘
TEXohET, feClz,y] 25,
6}(0:,8,)f = 63(0:,8,)f =0

%ﬁr‘- -"_B# f ‘i G7 @mmgﬁﬂt W‘ini -"-o —— -C a: = a/a:, ay =
3/8y. Gy DMMBAADLUD2¥ Clx,y| DB EME H TRIZLiZL
¥4, HidClz,y| ® Gr-BamBEL 20 E4,
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Clz1,y1, T2, ¥2, z]f' DERTTERDBIHIZKIZEBA T 5 Steinberg & Cheval-
ley DERERVET., ThLEORBRIZ—BOBERGFVIICH L TR SIHF
®rTY,

88 2 (1) (Steinberg [11]) dimg H = |G7|. E£7= G-t L TORA
H®cClz,yl® = Clz,y),
f®g = fg
AREY LD,
(2) (Chevalley [4]) G7 @ H LORFUIERERETH B,

H' C Clz1,3), H? C Clzz, 2] % Gr PRABSTREDOR THHLEME L
%7, Steinberg DREREHAVS L.

Clz1,11,%2,¥2,2) =~ Clz1, 1] &c Clza, y2] ®c C|2] _
>~ H'®Clz1, )% ® H? ® Clz2,12|%" ® (8]1,C2*) @ C[2*?
LERSTL; (1=1,2,3) DEAYZELS L,
C[zlrylrx21y2’z]f‘
~ ol (H'eH?* @)
®C[9:1’(-‘51,U1),9§($1,y1)] ® C[B:l;(xm yz),O%(zz, y2)] ® C[zlzly

2%¥4. Irr(Gr) 2 G DEEIIE D2k L LET, Chevalley DRER LY.
& x € Irt(G7) ® H TOMBE L x(1) T3 H D Gr-BEAMME~D 53R &
e E2 bh L LET:

H = &eln(cy) efill) Hy i
(Hy; PR ) = x.
ZDGENG Gr-MiEL LTOLE
H'@ H*®:*
= @O x2elm(Gr) 93‘;(11) e;'c;(ll)H;l,i ®HL;® 2
EBET, L2 elr(Gr), 1<i,j<x(1), 1<k <11 &L, Gr-Bohn
HL\ @ HYL ® 2%,

B2 ET, o & Gy ORIRRET or(01) = (—vV=1)%, wr(o) = ¥, pilos) =
1@+ b0e LET, oy OMEIZ2 RO TERIL Lk ABEDOBE LT
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Dk 5 RIEERFELAVCI LICEBLET, L2 = (VEDF, Daek =
wikzk L3285 =K ICHETBE,

{g € H)lcl,.- ®H§:J | og-g= (pk(g)g for all g€ G‘]}

RO (HL @ HY ;@ 2F)T 2135 LAMRB LRGN IET, 1
2L Gy @ H'® H? C Clz1, 1) ® Clzz, y2] LN ERiL g g®g, g€ G7 T
£zTVET, )

xhx? € Im(Go) IR LT, (X! x xB 0} = (X o xx3) =4
UTAS Ral - ol N

a2 DARR

xt XX

dimc{g € H;I.'i ®H:3.J' |0 g=x(o)g forallge G7} = axl,qpxx-z
L0 FETF, FLHDLKOEREBELE,
EE 3 9?(zl|yl)$Bg(zlayl)s0?(:5%”2')’9%(12’!/2)7212 k

Myigi = (H} ;@ HE o ® ),
k=0,2,4,...,10, x €Irr(Gy), 1 <4,7 < x(1)

it Clzy, 41, T2, 10, 2)° DERTEEX B, & Myiju X1 KTETHS,

TEE 1 ‘:ﬁmétb & N 9?(-‘51,111),9%(-‘51, yl)» 9?(12, y2)’ B%(Zg, y?)» 212 ixCc +
REOMSIRTER Y EX. M, jx TERLSOEBAOFERE 5X TV
BT Lz ET,

Myix OEER, BAEE =0 T5EUTOLIICLTRDBZL
MIHKET, ¢o Gy DEARIBEE Y £ T, HL, OEEL fi,..., fyu),
HZ; ORHBES f1,... [y £TDE Myao 0BEE T £t ©5
XBNET, kAMOMERDHE bIFERRIC LT My jx OBES BKN
it RDBZEnHEES,

BEDZ et H O Gr-BAMBE~DIRE H = yeirmarn O Hyi 18
BIEEIZH 2L Clzy, T2, v, 2] PERTRBR CEZZLBHMD
Liz, KICEDRMOFEOEBER~EY, G % V=10, & 0y TEREH
BWLLET, Gy bEIRFIRBE CALEITL 24, 7 Gy DIEE 6 DERT IR
LRATHET, SLIEGr=(Gy, (1) BRYIBET, ZIT

ler\/—_l/m 0
Ci2:= 0 g2z |

Lo TU C Clz,y] 2FRBBXMN OGS Go-MBoMB L35, Uik
Gr- B MBEC LAY 27, Gy DHERBHEXH 52 55 ZERM H(G,) % Gs-
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BEMIMBE O AR L T & ¥, GAP[7] & Maple 2/ L ¥ 2580
PLEAVNENW D THRITHBES IcHEET, RASHROERENG H =
®eo Dlop OIOLH(Gy) ANV EF, LEN>TEMD H O Go-BEXOMBE~
DERBB/ONET, H(G,) D Go-BMMBEDHI~DORRNT—F, BL
CENZHALTO M, PEEDBKO WAL LITLT(12) ICRET
HYET,
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On Relative Difference Sets in Non-Abelian
p-Groups

Dominic Elvira®and Yutaka Hiramine

Abstract

In this article, we study semi-regular relative difference sets (RDS’) in
non-abelian p-groups containing a maximal cyclic subgroup of index p. In
particular, we prove that if the modular p-group M,(p) has a non-trivial
semi-regular RDS then the order of the forbidden subgroup is p. We also
show that M;(p), p > 3 contains a semi-regular RDS. On the other hand,
we prove that M,(2) and the semi-dihedral group SD;~ do not contain a
non-trivial RDS for any n > 4.

1 Introduction

An (m,u, k, A) relative difference set (RDS) in a group G of order mu relative
to a normal subgroup U of order u is a k-element subset R of G such that the
number of ordered pairs (r,ra) with rir;! = g (ry,rs € R) for every ¢ € G,
g#1lisAifge G\Uor0if g € U. By this inherent property of U, we
often call it the forbidden sudgroup. If k = ul, we call R a semi-regular RDS
and its parameters are given by (ul,u,ul, ). In this case, R is a set of coset
representatives of G/U. Moreover, if u = 1, R is called a trivial semi-regular
RDS. Any group G itself is a trivial semi-regular RDS.

Previous studies on RDS’s, especially the semi-regular case have been fo-
cused mainly in abelian p-groups ([2], [9], [13]). In contrast, examples and
results in non-abelian case are rather scarce. Thus we aim to explore the prop-
erties of RDS’s in some non-abelian groups and exhibit examples when possible.
This may help to enlighten us what is going on at least in non-abelian p-groups.
Specifically, we have been considering non-abelian p-groups G of order p® which
contains a cyclic subgroup H of order p"~!. In [5], a complete classification of
these groups was given, namely:

(1) Ma(p), the modular p-group of order p™ with n > 3 if p>2and n > 4 if
p=2,

(2) D3=, the dihedral group of order 2" with n > 3,
(3) Q2-, the generalized quaternion group of order 2" with n > 3, and
(4) SDaa, the semi-dihedral group of order 2" with n > 4.

*This author is a faculty member of Philippine Normal University (PNU), Manila on study
leave at Kumamoto University under a Monbusho grant.
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As a review, in [4) the authors were able to prove the non-existence of non-
trivial semi-regular RDS’s in Dy~ for n > 3, in fact, in any dihedral group Dy,
for any positive integer m. In the same paper, we constructed an example of
a semi-regular RDS in Q2» with parameters (27~!,2,2"~!,27~2) relative to is
center for n > 3. This result, as we found out, is related to a conjecture of N.
Ito that asserts the existence of a (4¢,2,4t,2t) RDS in the dicyclic group Qs,
see [13]. On the other hand, the seacch for RDS’s in the modular p-group M, (p)
and the semi-dihedral group SD,~ have been open problems.

In this note, we focus our attention to the groups SDj3~ and M, (p) where p
is any prime. In particular, we prove that if the modular p-group M,(p) has a
non-trivial semi-regular relative difference set then the forbidden subgroup is of
order p unless (n,p) = (4,2). We also show that M,,(2) and the semi-dihedral
group SDj~ do not contain a non-trivial RDS for any n > 4. Moreover, we
show that M;(p) has a (p?,p,p?, p)-RDS when p > 2. As a consequence of
this construction, we show the existence of a semi-regular RDS in any extra-
special p-group of order p*™+! with parameters (p*™, p,p*™, p*™~!) relative to
its center for any m > 2.

2 Preliminaries and Terminologies

In this section, known results that will be used frequently are provided. All
groups and sets are assumed to be finite and the terminologies applied are as in
[5] and [11].

For a subset X of G, weset X! = {z~! | 2 € X} and throughout this article
we identify a subset X of G with a group ring element X = Z z € Z[G]. By

ze X
definition, a k-subset R of G is an (m,u,k, A) RDS in G relative to U(4 G) if
and only if R satisfies the following equation in the group ring Z[G] :

RR™' =k + MG =V).

As any group G itself is a trivial semi-regular RDS relative to {1}, in the rest of
this article we consider only non-trivial semi-regular RDS’s. We also consider
the forbiddén subgroup U to be always a normal subgroup of G and by the
symbol p, we mean a prime number.

The following result due to Elliot and Butson [3] is basic in the study of
relative difference sets.

Result 2.1 Let R be an (m,u,k,A) RDS in a group G relative to a normal
subgroup U and let U, be a normal subgroup of G contained inU. Set G = G/U,.
Then R is an (m,ufuy, k,uyA) RDS in G relative to U.

For a group X, we denote its exponent by exp(X).

Result 2.2 Let G e an abelian group of order pt®. If G contains a (p*, pb, p, p*~*)
RDS R relative to U then the following exponent bound conditions hold:

(i) exp(G) < p® unless G =~ Z,
(%) esp(G) < p***~19/3, and
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(iii) if a is odd and p > 2, then ezp(G) < p*+V/? and if p = 2, then erp(U)
< plo*1i2,

In the above result, (i) and (ii) are Corollaries 3.2 and 3.5 in [10], respectively,
while (iii) is Theorem 4.2 in [8]. The next result is called the product construction
for semi-regular RDS’s.

Result 2.3([1], [12]) Let G satisfy the following:
(i) G = G,G; for some subgroups G, and G,
(ii) either G Gy or G b G,

(iii) G G, N G,, and

(iv) Ri is a (uh;,u,u);, X)) RDS in G; relative to U = G, N Gy for each
ie{l,2).

Then R\ Ry is a (uA1 Az, u, ul A Az, ul A2) RDS in G relative to U.

At this point, we shift our attention to the modular p-group M, (p). Using
generators z and y, this group is defined by:

Malp) = (2| 2”7 =P =1, y ey = 2147,
Set G = M,(p) and z = z*"~". Then, by Theorem 5.4.3 in [5],
[G.G] ={z}) and 2Z(G)=(zf).

We note that when p = 2, we have n > 4 as M3(2) ~ Ds, the dihedral group of
order 8 and if p > 2, we have n > 3.

For every ¢ € G, we can write ¢ = z'y’ where 0 < i < p*~!' -1 and
0 < j < p—1. The next lemma provides a summary of the group operations in G
that we will use most often. The proof can be obtained by simple computations.

Lemma 2.4 Let z°y® and z°y? be elements of G = Mn(p). Then the following
hold:

(i) (tc!{b)(zcyd) = :“""'“P'_’ybhi.
(%) (=°yb)(=‘y‘)" = :°'°+¢(b-d)p"’yb-¢.
(l!l) (z‘yb)m - zma'“(1+7+"’+’"-|)P"’ymb_

(iv) Let Aut(G) be the full automorphism group of G. Then Aut(G) = {fi;x |0 <
i<p*~1=1,i 20 (mod p), 0< j,k < p-1}, where §; ;. is an automor-
phism of G determined by 6; jx(z) = ¢, i x(y) = 2% "y

Definition 2.5 Let {2} be a cyclic group of order n. Let S be a collection of
elements of (z). Here we assume that S can contain an element several times.
Set S = {z™ 2™, ... 2™}, We define

e(S)=my +ma +--- + m, (mod n).
We note that £(S) is uniquely determined modulo n.
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3 The Parameters of a Semi-Regular RDS in
M (p)

In this section, we let G = M, (p), the modular p-group of order p” and we
assume that Ris a (p®,p°, 5%, p2~%) RDS in G relative to a normal subgroup U.
As |G| = p***, we must haven =a+band a > b,

Lemma 3.1 If R is a semi-regular RDS in G relative to U then its paramelers
are cither one of the following cases:

(i) (8,4,8,2),
(i) (P*,p%,p%1) withp> 2,
(iii) (p"=',p,p"",p""?) withp > 2.

Proof. If |[U/| = p, then we have case (iii). Assume |U]| = p* > p?, that
is, b > 2. Since (z) = [G,G] < Z(G) = (z), we have [G,G] < U. Set
G = G/[G,G](= Zy~-2 x Zp). Then by Result 2.1, R is a non-trivial abelian
(p%,p°',p®,p°~*+') RDS in G relative to U. Applying Result 2.2(i) to G, we
haves+b—-2<aandsodb=2 Asa>ba>2

By Result 2.2(ii), a +4-2 <a+b~1-[a/2]. Hence @ < 3. Thus we have
(a,8) = (2,2) or (3,2). By Result 2.2(iii), (a,d} # (3,2) when p > 2. Hence
(a.b) = (2,2) or (a,b,p) = (3,2,2). Therefore we have the lemma.

We first settle case (i) of Lemma 3.1 by the following:

Lemma 3.2 There exists no (8,4,8,2) RDS R in M;(2) relative to any subgroup
U of order 4. :

Proof. Set G = M;(2) and let G = (z,y | z}% = y* = 1, y~'zy = zz) where
z = 28 Assume that R is an (8,4,8,2) RDS in M;5(2) relative to a normal
subgroup U. Set G = G/(z}(~ Zs x Z;). Then, by an argument similar to the
proof of Lemma 3.1, (z) C U and R is an (8,2,8,4) RDS in G relative to U. By
Theorem 4.4 of [9], U = (z*). Hence U = (z%).

Set H = (£?)(= Z(G)) and R = A+ Bz +Cy+ Dzy, where A,B,C,DC H.
Then A,B,C,D are sets of coset representatives of H/{z). Since RR™! =
84+2(G-U)=8+2(H-U)+2Hz+2Hy+2H <y, we have 2Hz = A(Bz)~' +
(Bz)A~! + (Cy)(Dzy)~* + (Dzy)(Cy)~*. Hence

AB 'z 4+ A”'B4+CD 'z 4 C"'D=2H. ™ (1)

Set A =20 4 7442 B = gic 4 p4442 (O = pie 4 2 U+2 apd D = 249 4 24+2,
By (1), we have 2(z? + 28 + 210 4 z14) = gla=e=2 4 f4b-4d-2 | p-datadsz o
x-4b-2+4¢+=4e-4g-2+z41-4h-2+=-4e+4h+2+x-41-2+4g' Thus 5(2(=2+=G +
z!° 4 z!4)) = —8 (mod 16) (see Definition 2.5). Therefore 0 = 8 (mod 16), a
contradiction.

In section 4, we are going to settle case (ii) of Lemma 3.1 and in section 5,
we show the existence of a (p?,p,p?,p) RDS in Ma(p), p > 2.

— 158 —



4 On (p%,p%p% 1) RDS in My(p)

In this section, we assume that the RDS R in G = M,(p) has parameters
(r*, 7, 7%,0°7%) = (p%,p%,p%,1). We recall that My(p) = (.9 | 2*’ = ¥ =
1, y~lzy = zz) where z = 2’ and p > 2. There are exactly p+ 1 normal
subgroups of G of order p* : (zP), (z,¥), {zPy)(1 < i< p—1). By Lemma
2.4(iv), 8; 0,0(zPy) = z'Py. Hence, it suffices to consider only the following three
cases:

() U=(=) =20,
(i) U=(2,y) =2 xZy,
(i) U = (2Py) ~ Z,s.
We define subsets A; (0 < i < p—1) by A; = Ry"*n(z). Then R =
Ao+ A+ -+ Apayl.

Lemma 4.1 Set RR™! = Bo+ Biy+- -+ By_1v*~}, where By, By, - - yBpoy €
Z[(z)]. Then

By = Z AAT =P 4 (2P + -+ (2P)2P
0<i<p-1

Proof. As R= Ag + Ajy+ -+ + A, 15771, we have o
RR™' = % (AgdAy) = ) Aw'Ay

0gij<p-1 0<ig<p-1
- 3 . .
= Z ,4,',4_,-'“'(""’))‘D ¥y =p® 4+ (G- U) by Lemma 24.
0<i j<p-1

In particular,

By = Z AAT =P 4 (2P)z 4+ (2P)?
ogigp-1

Lemma 4.2 Case (i) does not occur.

Proof. Set S = RR™' N{(zP)z. By Lemma 4.1, $ = (zF)z. Since R is a set of
coset representatives of G/U and U = (2P} > (z), it follows that
A; = zPOw 4 zPontl 4 ppaat? 4 L 4 gPOw-1tP-l (g, € Z) for each i €
{0,1,---,p—1}. Hence
e((z®)z) =1+ (L +p)+ (1 +2p) + -+ + (1 + (p7 = L)p)
= (plaio — Gip-1) — (P— 1)) + (P(ai,1 — ai0) + 1) + (p(ai2 — ain) +1)
4+ {p(@i p-1 — Gip-2) + 1) (mod )p* (see Definition 2.5).
Thus p* = 0 (mod p*), a contradiction.

Lemma 4.3 Assume p > 2. Then, in cases (i) and (iii) we may assume the

following :
Ao= Y SR 4 S gt
0<ise-1 18igp-1
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A= ), ™R (1<i<p-1)
1€j<r-1

where aj,bj,¢cij,m; €EZ and mj =j (mod p) for any i, j.

Proof. Set G = G/(z) = Z» x Z,. Then Ris a (p?,p,p?,p) RDS in G relative
to U ~ Z,. Here U = () ot (zPy). By Theorem 3.2 of (8], a translate of R has
the following property :

R=(@P)+5iH + Z Fi{zPy"), where
2<i<p~1

TH:{ (=) U =(3)
(3 U =(y)

and
gi=z™(1<i<p-1)and {ny,--,npy1} = {1,+-- ,p—1}(mod p)

Hence, by Lemma 2.4(iii),

R= Z zJ'P'H'JP' + Z Z ™ +jP+¢l-jP’ y‘j or

0<jgp-1 1gigp~1 0<jigp-1
R= Z giptap’ + Z z"l"“l.l?’yﬁ
0<isp-1 0gjs<p=1

+ Z Z zn.’+ir+=i.jp’y"i

2gi<p-1 0<j<p-1
depending on whether U = (§) or U = (zPy), respectively. Here aj,e;; € Z. Set

w.={ m iU =(9)

n-p ifU‘:(?—i) andw.'=n'.(25,5p_l)'

Then . ) ) 2 i
R= Z gIrtap’ o Z Z gwtiptenspt i
ogjcp~1 1<i<p-1 0<j<p-1
Hence
A= Z zirtap® 4 Z ZWitenop?, @
0<i<p-1 1<i<p-1

We now consider A,y fort € {1,2,--- ,p—1}. Let s € {1,--- ,p~1}. Then
there is a unique solution (i, j) of the following simultaneous equations :

=t (mod p)
wi+jp+eijp =8 (mod p)

Thus for any t € {1,2,--- ,p— 1}, we have

A= ) #*tee? (1<tgp-1) (3)
1€s<p-1

for some ¢, € Z. By (2) and (3), we have the lemma.,
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Lemma 4.4 Set S = RR™! N (zP)z and assume p > 2. Then ¢(S) =
p? (mod p?) in cases (ii) and (iii).

Proof. As RR™' = p*+G-U and UN(zP)z = ¢, we have S = z zltP
0<igpi-1

hence ¢(S)=1-p2 +p(0+ 1 +--- + (p* - 1)) = p? (mod p7).

Lemma 4.5 Case (ii) and (iii) do not occur if p > 2.

Proof. By Lemma 4.3,

A= Z ™+ z 2% and

0i<p-1 1<j<p-1
A= z ¥
1¢igp-1

for each i € {1,.--,p — 1} where u; = 0 (mod p), v; = j (mod p), and
w;j = j (mod p). Set S; = A;A;7! N (zP)z for each i € {0,1,--- ,p — 1}. Then
by Lemma 4.1, S = Sg + Sy + - -+ + Sp—1, where

So=z¥TY0 £ VTV L. g VOVt Z V'Y and
0<igp—-1

Si - :‘”l-!'wl.l +zwl.3—wl.3 + -+ z"‘l.v-l""-.v-i (] S |' S p- l).

Therefore,

ES)=pvy—(uo+-+up1) + D (Wipo1 —wia)
1gigp-1

= (p—1){p-2) =2 (mod p).

On the other hand, ¢(S) = 0 (mod p) by Lemma 4.4. As p > 2, thisis a
contradiction. Thus we have the lemma.

We remark that the only case excluded by Lemma 4.5 is when p = 2. In
this case, K. Akiyama has found out that Ry = {1,z%y, 23y, 2%y} is a (4,4,4,1)
RDS in M4(2) relative to U = (z,y) = Z3 x Za. Any (4,4,4,1)RDS in M4(2)
corresponds to a projective plane of order 4.

Lemma 4.6 Assume p= 2. Then U = (z%,y) and there exist § € Aut(M4(2))
and g € M4(2) such that 9(Rg) = {1,z,2%,z%]).

Proof. We first note that G\ U contains no involution, otherwise, d\d; ' is an
involution for some d\,d2 € R and so did;' = dyd;*, contrary to A = 1. In
particular U = (z*,y). Clearly G = UUUzUUz3UUz3 is a coset decomposition
where:

U={1,z%y2'), Uz={z2%zy,2z°y},

Uz? = {2 2% 2%,2%), Uz®={z3,27,z%,z7y}.

We may assume that 1 € R. By Lemma 2.4(iv}, Uz C {8(z) | # € Aut(M4(2))}.
Hence we may assume that

—161—



z€Randso {l,z} CR Asz2%z7' =zI"'(=z ¢ U), 22 ¢ R. Since
foo3(z) = z and g (2%y) = z°, we may assume either {1,z,2°} C R or
{1,z,z%y} CR.

Assume {1,z,z°} C R As 231 ' = zz~8(= 23 ¢ V) and 271"} = 1z~ (=
z7 ¢ U), we have 23,27 ¢ R. Since fop1(z) = z and fe01(2%y) = =7y,
we may assume that R = {1,z,z% z%}. Moreover f7g0({l,z,2% 2%y}z7) =
{1,z,23 z%y}.

Assume {1,7,z%y} C R. Asz"1" ! = 1z~ (=27 ¢ U), 21~ = z3y(z%y) "' (=
z¢U)and £7yl™! = =(z%y)~ (= 27y ¢ U), we have z7,z%y,z7y ¢ R.

Hence R = {1,z,z% z%y}. We can easily check that R is actually a (4,4.4,1)
RDS. Therefore the lemma holds.

By Lemmas 3.1, 3.2, 4.2, 4.5 and 4.6, we obtain the following:

Proposition 4.7 Let R be a non-trivial semi-reqular RDS in the modular p-
group M, (p) relative to a normal subgroup U. Then either U ~ Z, or (n,p) =
(4,2) and U ~ Zz X Zg.

5 Non-Existence when G ~ M,(2) or SDn

In this section, we show the nonexistence of (2"~!,2,2"=1,2"=1) RDS in M.(2)
and SDgn .

Lemma 5.1 Let H = (w) be a cyclic 2-group of order at least § and z the
unigue involution in H. Let A and B be sets of coset representatives of H/(z).
Then AB~! #£ A" Bw*® for any odd integer c.

Proof. Let 2™%! be the order of w. Since A and B are sets of coset represen-
tatives of H/(z) (z =w""), we can put

A= E w et and B= E w? bt
0<i<Im-1 0gi<a™-1
for suitable a;,4; € {0,1}. We also set
AB™'= ) v
0gigamti—]

As z = w?" and B~! is a set of cosets representatives of H/(z}, we have
AB~'(1+vw™") = AH = 2™ H. Hence

CGiteamyi =27 (0Kig2™~1). (4)

Let S be the sum of exponents of the terms 1 or w®™ in AB~! and let T be
the sum of exponents of the terms w or w®" +! in AB~!. Then

S= Y (@a-2"k)= Y. a- Y 2™
0gig2™ -1 0<ig2m -1 0gig2am -1

and

T=2"a— (2" +2" = 1)+ Y (2"ai—2"biy +1)
1<i<2™ =1
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= ) Ma - Y. 2™

0<i<2™ -1 0<i<2™ =1
Thus S=7T.
First assume that
AB~'= A"'Buw. (5)
Since
A™'Bw = Z Ciw2“+'+1-i =1+ cow + Z c2n+x+1_jwj,
0gi<amtl o) 2<igam+i—

it follows that

Co=C1, € =Comttp1~i (2<i< gm+l ), (6)

On the other hand S = 0.¢q + 2™cam and T =1-¢; + (2™ + l)camy1 = o +
(2™ + 1)cam (mod 2+1) by (6). As S = T, we have cg + c2» = 0 (mod 2™+!),
contrar y to (4).

We now assume that AB~! = A~! Bu* for some odd integer c. We consider
an automorphism o of H given by o(z) = z¢, where d is an integer such that
cd =1 (mod 2™*1). We note that ¢(A) and o(B) are also sets of coset represen-
tatives of of H/(z) and that o(A)e(B)~! = a(A)~'o(B)o(uc) = o(A)~'o(B)w.
The last equation is similar to (5) and so this is a contradiction. Therefore the
lemma holds.

Lemma 5.2 Let R be a (27~1,2,2"~1,27~2) RDS in G =~ M,(2) or SDp»
relative to U. Set G = (z,y | =¥ = 3® = 1, y~lzy = 22" "%} 50 that
R = Ap + Az + Boy + Byzy, where Ao, A1, Bo, By C (z?).

Then

(i) Ao, A1, Bo, B) are sets of coset representatives of (z2}/(z}, where z is the
unique involution of (z2).

(i) We have ByB;' = By ' B,z%z.
1 3

Proof. Set H = (z?)(= Z3.-3). Since U = (z), (i) is obvious. We note that y
centralizes or inverts H depending on whether G = My(2) or G =~ SDs..

We first assume that G ~ M,(2). Then RR™! = AgAg' +AiA] +BoBy' +
ByB[' + (AgAT'z™2 + Aj A, + BoB'z72 + By !B )z + (AOB§' +A;'By +
A1BT'z 4+ AT'Byx)y+ (A1By ! + Ag' By + AT ' Boz =2z + AoB[ 'z7%z)zy. On
the other hand, RR™! = 2" 4+ 2"~2((H —= U) + Hz + Hy + Hzy). Hence
(AoAT'22 4+ Ag Ay + BoB['z=% + By ' By)z = 2"~ ?Hz. ;From this we have

AoAT' + A5 A2? + Bo By + By' Biz? = 2°7?H. Q)
As R~'R = RR™! by Proposition 2.8 of [7], similarly we have

AoAT! + A3  Ayz® + BoBy 'z + By Byc?z = 2"2H. (8)
By (7) and (8), we have BoBil + B;'Byz? = (BoB{' + By'Biz%):. On

the other hand, (BoB;' + By'B123) + (BoB;! + Bg‘B.zz)z = (BB +
B31B,z%)U = 2"~2H since By and B, are sets of cosets representatives of H/U.
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Thus we have BoB;' + By'B1z? = 2°~3H. Moreover BoB;!' + BoB['z =
BoB'U = 2*—3H. It follows that By'Byz? = BoBy'z. Therefore we have
B()Bl-l = BEIBI.‘L'!Z.

We now assume that G ~ SDj;«. By a similar argument as in the last
paragraph, we have

AoAT' + Ag'A12% 4+ BoB ' + By ' Biz? = 2*?H
and
A'?lAl_l + AJIAI-” + BoB,'lz + BE'B,:’Z =""2f,

It follows that BoBy! + By'!Byz? = (BB + By'B, + z%)z. By a similar
argument as in the last paragraph we have BoB; ! = B;!Byz?z. Therefore the
lemma holds.

Proposition 5.3 There is no (2"~1,2,27~!,2°~2) RDS in M,(2) or SDan.

Proof. Let notations be as in Lemma 5.2 and suppose that the proposition is
false. Set w =122, H = (w), A= By and B = B,;. Then,as n > 4, |H|> 4. By
Lemma 5.2(ii), AB~! = A~1Bw'+?"™* contrary to Lemma 5.1.

By Propositions 4.7 and 5.3 and the results of section 3 in [4], we have

Theorem 5.4 Let G be a non-abelian p-group with a mazimal cyclic subgroup.
If G contains a non-trivial semi-regular RDS relative to a normal subgroup U ,
then one of the following holds :

(i) G=~Qz and U ~12Z,,
(ii) G Mu(p) and U = Z, with p an odd prime,
(iti)) G~ My(2) and U =23 x Z,.

6 Existence of a (p?,p,p%,p) RDS in M;(p)

In this section, we consider case (iii) of Lemma 3.1, that is, when the RDS R in
G has its forbidden subgroup U =~ Z;. In particular, we take n = 3 and p > 2.
Then we can construct a (p?,p, p?,p) RDS in M3(p)

for any odd prime p. Set Ry = {z®+**y® | 0,b € I} where / = {0,1,--- ,p—
1}. Take note that we compute the elements of / modulo p .

Proposition 6.1 Let p be an odd prime. Then R, is a (p?,p.p*.p) RDS in
Ms(p).

Proof. Set R= R, and let w;, w, be elements of R. Then w, = zotatpyb,

wy = z¢+<9yd for suitable a,b,¢,d € I. Let r,s,t € J and assume that (r,s) £
(0,0). Set Sp 54 = ‘(w;,wg) € Rx R|ww;! = 2"y},

As wyw;! = go-cHlabtbe-2cdlpyb-d Ly Lemma 2.4, we have

a—c+(b(a+c)~2d)p=r+1tp (mod p?) (9
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and
b—d=s (mod p). (10)

By (10), b = d + s (mod p).

First assume that r = 0. Then s % 0 (mod p) by assumption. By (9),a =¢
and so we have 2sa = t (mod p). Hence we have c = a = #(23)~! (mod p)
and so there exists a unique fp € J such that ¢ = a = io. It follows that
(a,b,¢c,d) = (ip.d + s,ip,d), where d € I is arbitrary. Hence |5, , | = p in this
case.

We now assume that r # 0. Then we have to consider following two cases;
(I)a>c,a~c=r, (a+c)h—2c-d=1 (mod p), 6 —d = s (mod p)
(2a<c, pta—c=r, (a+ec)b=2c-d=t+1 (mod p), b —d = s (mod p).

In (1), (a,¢) € A = {(r,0),{r + 1,1),--- ,(p— 1,p — r — 1)}. Moreover, as

a T ¢ —_2lc =c—a#0 (mod p), (b,d) € J x I is uniquely determined for
each (a,c) € A. Hence there are exactly p — r (a,b,¢,d)’s in this case. In (2),
(a,c) €lr= {(olp-' r)v(lrp_ r+ l)l"' '(I‘—- l,p—- l)} As ' aTc :zlc l =
¢ —a Z 0 (mod p), (b,d) is also uniquely determined for each (a,c) € T'. Hence
there are exactly r (a,b,¢,d)’s in this case. Thus we have |S,,| = |A| +|T| =
(p—r)+r = p when r # 0. Therefore |S;,,¢| = p for any r, s, such that
(r,s) # (0,0). It follows that R is a (p?,p,p?,p) RDS in M5(p} for any prime
p>2.

As a consequence of Proposition 6.1, we can construct a semi-regular RDS
in any extra-special p-group to be shown in the following corollary.

Corollary 6.2 Let P be an extra-special p-group of order p*™+! with m > 1.
Then there exists a (p*™, p,p*™, p*™~1) RDS in P relative to [P, P|(= Z,) unless
P~ Dg.

Proof. By Propaosition 3 of [6], it suffices to consider the case that p is an odd
prime. Then, by Theorem 5.5.2 of [5}, P is isomorphic to one of the central
product M™ or M"='N, where

M=Mp =(z,pz| =y =22=1[z,2)=[y.z] =1, [z,¥] = 2),

N =Ma(p) =(z,y | o =9 = Ly lay=z'**") (p>2).

By Result 2.3 and Proposition 6.1, it suffices to consider the cases when P is
isomorphic to M.

Assume P >~ M. Then there exist normal subgroups A and B of P such
that A ~ B~ Z, x Z, and P = AB. Since a noncyclic abelian group of order
2° has a (p, p, p, 1) RDS for any odd prime p (see [11]), P also has a (p?,p,p?.p)
RDS by Result 2.3. Thus the corollary holds.

Example 6.3 If G = M(p)" = {(z),01,--- +Zr) ¥r) 2), then
R={zi, yfr 20,47, ¥ vd 2 | ix,js €GF(P) 1 < k < 7},

is a (p?",p,p?",p* ') RDS relative to Z(G) = (z) where f = 3 ;_(i2 + j?).
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Example 64 IfG = Ms(P)M(P)r-I = (zlvyly"' ,I,-,y,-.Z), [Ii,yi] =3
2 < i< rthen ‘

= (TS aml)( X sk st

i=0 j=0 in g EGF(p),2<k<r

isza (%, P, P*",p* ") RDS relative to Z(G) = (z}) = () where f = Y _,(ii +
jk)-

In this article, we have shown that if an RDS R is contained in G = M,,(p)
of order p" relative to a normal subgroup U then its parameters are given
by (p"~',p,p"~',p""2) and U =~ Z, C Z(G) except when G = M4(2) and
U =~ Z3 x Z;. In addition, if p > 2 and n = 3, we have shown the existence of
an RDS in G and if p = 2 and n > 4, we have shown the non-existence. At this
point, we pose the following:

Problem: Does there exist a (p"'l,p,p"'l,p"'z) RDS in G = M,(p) relative
to U =~ 7Z, when p> 2 and n > 47

We note, however, that when G >~ M,(3), we have checked the non-existence
of such an RDS in G by conducting a computer search.
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A general survey of relative difference sets

Nobuo NAKAGAWA
(Kinki University)

1 Introduction

We will mention the definition of relative difference sets in finite groups and a geometrical meaning
of relative difference sets in this section.

Definition 1.1 .
Let G be a group of order mn and N be a normal subgroup of order n. Then a k-subset R of the
group G is named to be a (m,n, k,\) relative difference set in G relative to N if and only if

RR'=k-1+ MG —N)

in the group ring Z|G|, namely for every element g € G, the equation
g==zy"

has exactly A solusions (z,y) with x,y € R and for every nonidentity element h € N the equation

above has no solusion (z,y) withz,y € R.

We remark that R is a ordinary difference set in G if N = (1}.

From a relative difference set in G a divisible design admitting G is constructed.
We define a divisible design as the following.

Definition 1.2 .

Let P and L be finite sets and I be a incident relation between P and L. Set (§) = { Ae P | Al¢)
for€e€ L. We call £ and & are paralell if ()N (€') = 0. Then (P, L;I) is named a divisible design
with (m,n, k, A) if and only if

(1) |P| =|L| = mn,

(2) |(&)| =k forallée L,

(3)L=LiULyU...UL,, where L; is a parallel class of lines for1 <i<m,

(4)|ILil=nfor1 <i<m,

(5)]1610 &3] =0 if &y, €, € L; for some i and [€; N €3] = A if & and €3 are not paralell.

Theorem 1.1 .

Let D = (P,L) be a divisible design with parameters (m,n, k,A) where L=L; UL U ... UL,,.
Suppose that a subgroup G of Aut(D) acts on P and L regularly and the global stabilizar of L;
coincide with a central subgroup N for each i such that 1 < i < m. Then for each P € P and each
LeL,R={z€G|P*et)} is a(m,n,k, A-relative difference set in G relative to N.
Conversely from a (m,n, k, A)-relative difference set R in G relative to N a divisible design with
same parameters admitting G as a regular autumorphism group on P and L is constructed.

The following lemma is fundamental to be constructed a new one from a relative difference set.
Lemma

Let R be a relative (m,n, k, A)-difference set in G relative to N. If U is a normal subgroup of
G contained in N, then there exists an (m, 2, k, Au)-difference set in G/U relative to N/U. In
particular G/N contains an (m, k, A)-difference set.
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2 (4m,2,4m,2m)-relative difference sets

A (4m,2,4m, 2m)-divisible design is a divisible Hadamard design introduced by N.Ito. Let D =
(P,L) be a (4m, 2, 4m,2m)-divisible design and set L; = {&;,€},--,Lam = {€am, &,,} Where
¢ ={aj,63,---,a4m }. We put the matrix A as

A=(aiz)

where a; 5 = 1if a; € (¢;) and a; ; = —1 if otherwise. Then A is a Hadamard matrix.
If there exist a (4m, 2,4m, 2m)-r.d.set in G relative to N =< e* > where e* € G and |e*| = 2,
then G is called a Hadamard group with respect to e°*.

Theorem 2.1 (N.Ito) .

(1) Z4 x 23, Zg x Zq and Zy x Z; are Hadamard groups.

(2) Extra special 2-groups are Hadamard groups.

(8) SL(2,3), the Sylow {2,3)-subgroup of SL(2,7) and SL(2,5) are Hadamard groups.

(4) Let q be a prime power. There ezist a Hadamard group of order 4(q+ 1) if g = 1(mod 4).
{5) Let q be a prime power. There ezist a Hadamard group of order 2(q + 1) if g = 3{mod 4).

(Ito 's Conjecture)
A group
Qom =< 8,b|a'™ =4 =1, a® =02 =z b lab=0a"! >

shoud be a Hadamard group.

It have be proved that Qg is a Hadamard group for m < 46.
We would like that Qssg ia & Hadamard group. Because a Hadamard group of degree 428 is not
known up to the present.

The existence of (4u?, 2u? —u, u? —u)-Hadamard difference sets means the existence of (4u?, 2, du?, 2u?)-
relative difference sets. It is known that there exist a (4u?,2u? — u, u? — u)}-Hadamard difference
sets for u = 2203%pipd . .. p3 here p;,py, - - -, p are primes.

3 (m+1,m -1, m,1)-relative difference sets and
(m+ y/m+ 1,m — y/m,m, 1)-relative difference sets

We will describe relative difference sets in abelian groups from this secticn.

Various divisible designs are observed in projective planes as substructures of them.

We say that a group acts quasiregularly on a set S if the stabilizers of all elements in § are
normal subgroups. It is known that a quasiregular group of a projective plane acts regularly on
orbits of maximal size.

Theorem 3.1 (P.Dembowski and F.Piper) .

Let G be an automar?hism group acting quasiregularly on points and lines of a projective plane of
order m, If |G| > B2t then one of the following holds where t denotes the number of point
orbits(=the number of line orbits) and F denotes the incidence structure consisiing of fixed points
and fized lines.

()IGl=m?*+m+1,t=1,F =0

(2) |G| = m®,t = 3, F is an incident point-line pair (P, ).

(3) |Gl = m®,t = m +2, F is either a line and all its points, or its dual..

({) |G] = m? = 1,t = 3, F is a non-incident point-line pair (P, f).

(5) |G| = m?—y/m,t =2, F =0. In this case one of the point orbits is precisely the sef of points
of a Baer subplane.
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(6) |G] = m® — m,t =5, F consists of 2 points, the line joining them and another line through
one of the points.

(7) |Gl =m? -2m +1,t =7, F consisis of the vertices and sides of triangle,
B)IGl=(m~ym+12t=2ym+1,F=0.

The case(1) correponds to the projective plane itself, planes of type (3) are translation planes
or dual translation planes. Ganley and McFarland have proved that case (8) cannot occur if m > 4.
The case (2), (4) and (5) can be described relative difference sets.

The following problem is one of the most striking problem in the relative difference sets con-
cerning Prime Power Conjecture.

(Problem 1.)
If there exist a (m+1,m—1,m, 1), (m+ Vm + 1, m — /m,m, 1) or (m, m, m, 1)-relative difference
set, then should m be a prime power.

The desarguesian plane of order g where g is a prime power admits a cyclic automorphism group
G of order ¢* — 1, and there exists a (¢ + 1,9 — 1, ¢, 1)-relative differece set in G. The following
example is this type.
Eample 1.
Let ¢ be a prime power. The set of elements a in GF(g?) with a + a7 = 1(i.e. with trace 1) form
a (g+1,q — 1,4, 1)-cyclic relative difference set in the multiplicative group of the field GF(¢?).

Theorem 3.2 (K.T.Arasu and A.Pott) .
Suppose that there ezsits a {(m + 1,m — 1, m, 1)-relative diff. set in a group G. Then the Sylow
2-subgroup of G is cyclic.

Theorem 8.3 (K.T.Arasu and A.Pott) .

Suppose that R s a (m + 1,m — 1, m, 1)-relative diff. set in an abelian group G relative to N and
t is a divisor of m. Then t has to satisfy the following conditions:

(1) The order of t modulo the exponent of G/N is the same as the order modulo the exponent of
C.

(2) Ift! =1 mod exp(N), thent! =1 ort! = m mod exp(G).

{3) Ift* =1 mod exp(G/N), then t! =1 or t/ = m mod exp(G).

Theorem 3.4 (K.T.Arasu and D.Jungnickel) .
Suppose that R is a (m + 1,m — 1, m, 1)-relative diff. set in an abelian group G. If m =0 maod 2,
thenm=240rm=0mod8. fm=0mod3, thenm =3 orm=0 mod 9.

Theorem 3.5 (K.T.Arasu and A.Pott) .
Suppose that R is a (m 4+ 1,m — 1, m, 1)-relative diff. set in an-abelian group G. If m = 8 mod 16,
then m — 1 must be a prime power. If G is a cyclic group, then m — 1 must be a prime.

Theorem 3.6 (H.P.Ko and D.K. Ray-Chaudhuri ) .

Suppose that R is a (m + 1,m — 1,m, 1)-relative diff. set in a cyclic group G. Let p be a prime
divisor of m.

(DIfpP =1 modm+1, thenp’ =1 mod m® — 1,

(2)fpP=m modm + 1, thenp?’ =m mod m? - 1.

P =1mdm—1,thenpP=1ormmedm2-1.

By using theorems above the following theorem holds.

Theorem 3.7 (D.Jungnickel and A.Pott) .
Suppose that R is a (m + 1,m — 1, m, 1)-relative diff. set in an abelian group G. If m < 10000
then m has to be a prime power.

Concerning (m + /m + 1, m — /m, m, 1)-relative difference sets we have the following.
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Theorem 3.8 (M.J.Ganley and E.Spence . ) .
Let R be a (m + /m + 1,m — \/m, m, 1)-relative difference set in an abelian group. Then m = 4
or m is not a prime power.

4 (m,m,m,1)-relative difference sets

Example 2.
Let g be an odd prime power. Then it is rather easy to check that the set

R={(z,2*)|z € GF(q)} C (GF(q).+) x (GF(q), +)

is a (g, g, q, 1)-relative difference set relative to N where N is the subgroup of elements whose first
coordinate is 0.

Example 3

Let g = 2° be a power of 2. Then the set {(z,y)|z,¥ € GF(g) } becomes a group G if we define
the multiplication (z,vy) - (u,v) = (z + u,y + v + zu). The group G is isomorphic to (Z;)° and
N := {(0,y) |y € GF(q) } is a subgroup isomorphic to (Z3)°. Then the set

R = {(x,x)|z € GF(q)}
is a (g, g, q, 1)-relative difference set in G relative to N.

Theorem 4.1 (M.J.Ganley) .
Let R be a (m, m, m, 1)-relative difference set in an abelian group G relative to N. If m is even,
then n has to be a power of 2, say m = 2¢, and G = (Z4)°, N = (Z,)°.

Theorem 4.2 (C.I.Fung, M.K.Siu and S.L.Ma) .
Let R be a (m,m, m,1)-splitting relative difference set in Z, X Z,,. Then m is the product of
distinet primes.

Theorem 4.3 (Y.Hiramine, C.I.Fung, M.K.Siu and S.L.Ma) .

(1) Let R be a (m, m, m, 1)-splitting relative difference set in Zp X Z,,.

Then it does not occur that m = pq where p and q primes.. (First Y.Hiramine proved the theorem
in the case p=3.)

(2) Let R be a (m, m, m, 1)-splitling relative difference set in Zy, X Z,,,. Then it does not occur that
m = pgr where p, q and r primes.

Theorem 4.4 (D.Gluck, Y.Hiramine, L.Ronayi and T.Szonyi) .
Let R be a (p,p, p, 1)-relative difference set where p is a prime. Then the corresponding projective
plane is dedarguesian.

Theorem 4.5 (N.Nakagawa) .
Let R be a (p™, p”, p™, 1)-relative difference set in a group H x N relative to N where p is an odd

prime. Then .
ezp(N) < { (el
p? (n : even)

Moreover exp(H) < p™.

Remark
In the theorem above it is unknown whether the group H x N is an elementary abelian group or

not. However the following theorem holds in the case |H| = |[N| = p*.

Theorem 4.6 (S.L.Ma and A.Pott) .
Let R be an abelian (p?, p?, p?, 1)-relative difference set in G where p is an odd prime. Then G has

to be the elementary abelian group.
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Now we would state an important theorem about splitting (2%, p, p?, p)-relstive difference sets
by S.L. Ma and A. Pott.

Theorem 4.7 (S.L.Ma and A.Pott) .

Let R be a (p?, p, p?, 1)-relative difference set in G = Zya xZ,, relative to N where p is an odd prime
power. Let Hy,---, Hp_) denote p—1 subgroups of G with |Hi| =p,Hi # N, and G/H; = Za. Let
U be the subgroup of G withU =2, x Z,. Then there are p — 1 group elements h; and a subgroup
Ho(# H; for i #0) of U such that

p=-1
R=HoU) hi H; (o)

Jor some translate R' of R. Moreover {idg,h), -, hp-1} is a complete system of coset represen-
latives of U.
Conversely any subset of G defined by (o) is a relative (p?, p, p*, 1)-differrence set in G.

5 Planar functions of elementary abelian p-groups type

In this section we will study about (p?®, p*,p?, 1)-relative difference sets in an elementary abelian
p-group. Let G and H be groups isomorphic to the additive group of the finite group GF(p") for
an odd prime p. Let f be a function from G into H(G = H = Z7). We define a Gauss sum of f

with respect to x € G and p € H where G and H are the character groups of G and H respectively.
Zxp = Z x(x)p(f(x))

z€CG

‘We have the following theorem.

Theorem 5.1 () .
A function f from G into H is a planar function if and only if

Zx.oZxp =P"
for any x € & and anyp € H such that p#£ 1. Then
tptut (n : even)
e = { +p T 1t (n:odd)

where w 5 & primitive p-th root and 7 = Ziez, Ale)ut.
(Here X is the character of Z;, of order 2.}
Put f(z) = (fi(z),:--, fu(x)) where z = (z),---,2,) € G.
We note f; is a polynomial in n indeterminates.(1 < i < n).
X corresponds to (4y,---,3,) for 3}, -+, i, € Zy by the definition
x(x) = X(-‘Ch o '|xn) = w‘.‘

where i-x = i;z; + .-+ 4 i,z,. Simularly p also correspond to (s,-+,3y) for (51, ,3,) € Z,.

Then
o= 3, WO ()
x=(21,,2.)€G

where f(x) = (fi(x), -, fa(x)) and s = (31, -+, 3n).

Now we define the bent polynomials family over Z, for any prime number p coming from planar
functions naturally in spite of planar functions are defined only on vector spaces over Z, for an
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odd prime number p.
A linear polynomial at a in n indeterminates over Z, is defined as

Ln(x) =a61Z|++* +onZn

where a = (ay,++*,8n) and x = (21,- -, 25).
The number of solutions of g at k € Z, is

ck(g) =u{(xlv"'|=n) € z; Ig(zlv"'»xﬂ) = k)

for a polynomial g(z1,:--,z,) in n determinates over Z,,.
Then the bent polynomials F,(n) is defined as follows.

Fp(n) = {f(z1,-++,zn) | fis satisfied the condition(V) below for any a € Z} }

Suppose that n is even.

n—1 2 =§3 —
P EpTFp (k= ko)
cx(la+f) = oea (1)

Pt (k # ko)

where kg is a fixed suitable element of Z,.

Suppose that n is odd.
pn—l (k - ko)

(Lot f) =4 o' +p°F (k€ ) (92)

prl-p (keB)

where ko is a fixed suitable element of Z, and Z, = {ko} U AU B such that |4| = |B| = &3*.
We have the following theorem by Theorem 5.1 and ().

Theorem 5.2 () .
A function f(x) = (fi(x),-- -, fa(X)) from G inlo H is a planar funciion if and only if

s1fi+: -+ safa € Fp(n)
Jor¥(sy,- -, 3n) € Z) such that (s1,-+,35) # (0,---,0).

Example 4
If a polynomial g in n indeterminates over Z, is a nondegenerate quadratic form, then f € Fp(n).
Example 5
Let f(x) = ax? + bx + ¢ be a quadratic polynomial over GF(p"). Put f(x) (f1(x),---, fa(x))

where f;(x) is a polynomial in n indetaminates over Z,. Then s1fi + -+ + snfa € Fp(n) for
(31, -, 9n) € ZD such that (sy,-+-,3a) # (0,-++,0).
Example 6

Set p=5n=2, f(x) = x? in Example §
hen f.(:: y) =z + 22, f;(::,y) 2zy. Moreover p*~! +p — p*T> =9,p™ 1 —p? 4p™T* =1
"t —ptF =4, p*l 49" =6
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Kk 0j1[2[3]4 k 011[2[3[4
cx(f1) 1(6[6][6]6 cx(f2) 94444
cx(211) 1|6[6|6]6 cx(2f2) 94444
cx(351) 1[6|6[6]6 cx(3f2) 94444
cdf) 1{6]6[6|6 ck(dfa) 94444
cx(f1+ f2) 94 (|4]|4][4 al2fi+fs)) [1[6]6]6]6
cr(f1+ 2f2) 1]6|6]|6]6 cix(3fi + fa 1/6|6][6]6
calf1i+4f2) |9|4[4|4 ][4 c@fi+f) |9|4]4d[4a]|4
cx(f1i+3f2) |1[6]6]6]6 (21+2f2) |9 |4]4]| 4[4
cx(2f1+3f2) |9 4|4 |44 ck(3f1+2/2) |9 |4 |44 (4
cx(2f1+4f2) |1|6|6]|6]|86 ck(@f1 +2f2) | 1]6]6[6]|6
ce(3fr +3fa) |94 [a]4]4 ce(dfi+df2) |94 ]|4]4]4
cx(3fi+4f2) [1]6]6]6]6 a{dfi+3f) |1 ]|6]|6]6]|6
For a = (1,2),

k 0[1[2[3]4

cx(La+ f1) 6/6]6[1]6

cx(La + J2) 444|409

caxllath+h) |4]|2|9]4(4

c(Lat2fi+fa)|6[6]6]6]1

Example 7(Coulter and Matteiws)
Suppose that the greatest common divisor of a and 2e is 1. Then the following polynomial is a
planar function.
f: GF(3°) — GF(3*) =z —z>+12

(Here we consider GF(3°) as the additive group. )
Specially f(z) = z!* is a planar function from (GF(3%), +) into (GF(3%), +).
From this example if we put

f(z,z2,23,74) = zf —:nzg+::fz;+zf:§+:§zgzg+zlz;za+z1:3::3—: 1T4 —::}zz+=1::§z4—=|::3::2+

zf:az,; + ::1:5314 + z;:l:g::,; - ::g::§=4 + Izza:l:z + zgzg

then f(z1,%,,73,34) € Fa(4).

Lemma(N.Nakagawa)
Let f(x,y) be m-form over Z,.

Sz, y) = 6oz™ + al:l:m-ly +---4 am_lxym—l + amy™

If(1) m=3,
or(2) 4<m<p—1,80#0,a, #0and (Zy+)™ ! = (Z,+)? then f ¢ Fp(2).

Problem 2
How many are there bent polynomials in Fp(n) for an odd prime p except nondegenerate quadratic
forms.
(1) Classify bent polynomials in F3(2), F3(3) and F3(4).
(2) Let {f1, f2, -, fn} be a system of polynomials in n indeterminates over Z, such that

sifit-+3snfn e}-p(n)

—174—



for ¥(s1,+++,3n) # (0,--,0). Thenis F(z1,---,2Zn) = (fi(21,--+,Zn),- -, fa (21, - -, %)) & planar
function from (GF(p", +)) into (GF(p", +))?

6 Finite geometries related to bent families over Z,

In this section we take n = 2m to be even and p = 2.
Bent families over Z; is well known as bent functions ago.

Pl 2P i gt g geol, ol o giml gt
Hence F3(n) is the family of a function f from (Z2)" into Z; with the following property.
co(f + L) =221 2™ c(f+ L) =2"""1g2m! (1)
for Va € (Z,)".
This property is also said in the following statement.
i{v e Zo)* | f(v) # La(v)} =22 £ 2! (#2)

for Ya € (Z,)™.

We denote the hamming distance of f and g by 8(f,g) for f,g: (Zz)* > Zy. For 0 < r < n, the
r-th order Reed-Muller code of length 2™ is spanned by the set of polynomial functions of degree
at most r on (Z7)". It is denoted by R(n,r).

R(n,1)={ f(z1, -+, 2n) =G0 + @121 + -+ 6nTp | 0; € Zy}
The covering radius of R(n, 1) is denoted by r(R(n,1)) .
r(R(n, 1)) = max{4(f) | f € Map((Z2)", Z2) }
where
8(f) =min{ &(f,L) | L€ R(n,1) }

Then it is well known that r(R(2m, 1)) < 22™=! — 2™~1, On the other hand by (#2)
§(f) = 22™~1 — 2™~1 for any bent function f.
Thus a bent function is a function which lies most far (bent) from the polynomial functions of

degree at most 1 on Z,.
Example 8
Nondegenerate quadratic forms over Zy are bent functions.

7122 + Z3T4+ -+ Tam—1T2m

Z1Z9+ T3z4 + - + Tam-3Tam-2 + =§.,._l + Tam-1%2m + z§.,.

Example 9

I)T3+z23T4 + - + Tam—1T2am + T1T3 - - Tam-1
P.J.Cameron says the problem of classifying bent functions appears to be hopeless.

(I)  (Bent functions coming from crooked functions and distance regular graphs with d =
3,2 =0, = 2.)(T.D.Bending and D.Fon-Der-Flaass)
Let V and W be n-dimensional vecter spaces over Zy, and Q : V — W any mapping.

Definition 6.1 .

A mapping Q is called crooked if it satisfies the following three properties:

(1) Q(0) =0;

{2) Q(z) + Q(¥) + Q(2) + Q(z + y + z) # 0 for any three distinct z,y, z;

(3) Q=) + Q(¥) + Q(2) + Q(z + 6) + Q(y + a) + Q(z + a) # 0 if a # O(Vz, y, 2).
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Then Q is a bijection.
Example 10
Let n be an odd positive intege and k be a positive integer and (n, k) = 1. We put

Q(x) =z +1 for V=W =GF(2")

Then Q ia a crooked function.
Suppose that Q is a crooked lunction.
For 0 # a, we denote by H,(Q), the set

H(@)={Q(=)+Qz +a} |z V}.

Then Ho(Q) is the complement of a hyperplane.
Let 0 # a € V. Moreover we define a linear functioal A, on W, and a mapping Q, : V +=— Z,,
by the following fules:
ha(w) =1 if and only if w € H,(Q)
Qa(v) = ha(Q(v))

Theorem 6.1 (Bending and Flaass) .

If0# a €V then for any hyperplane U C V not containing a:

(i) The two functions obtained by restricting Q, to U and to V/U are complementary, in the sense
that we can translate one to the complement of the other.

(it) The function Q,|U is a bent function.

Now a crooked function corresponds to a distance regular graph with intersection array
0 1 2 AR |
0 0 ontl _ g 0
il ontl_g 1 0

as following.

The set of vertices :V x {0,1} x W

The incidence relation : (a,i,a) ~ (b,7,8) <= a+ 8 = Q(a +b) + (i + 7 + 1)(Q(a) + Q(b)) for
(a)4,0),(b,7,8) €V x {ov 1} xW

This graph is a 2"-cover of the complete graph Kjn+1 of vertex size 2°+!,

(II) (Bent functions and symmetric designs with S.D.P)(W.M Kantor and P.J.Cameren )
Map((Z2)", Z3) is the 2"-dimensional vector space over Zs. The rth order Reed-Muller code is a
subspace of Map((Z4)™, Z2) with (,Co+5,C1+: - -+, C,)-dimension and minimal distance d = 2°~".

R(n,1) C R(n,2)

Let D be a coset of R(n, 1) in R(n, 2). Put D =R(n, 1)+ f for some f € R(n, 2).
We have §{ w(g) | g € D } < 3 where w(g) is the weight of g, and

#{ w(g) | g € D } =2 <= f is nondegenerate bilinear form (bent functien).
Then all elements of D are bent functions.
{w(g)|ge D} ={2>"""x2m"}
where n = 2m. We also have
HgeD|wg)=2"""-2"""}={g€ D|wlg) =2>"""+2m"!} = 2?7

We remark that the dimension of R(2m, 1) is 22™m+1,
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Now we set as following.
B, =supp(g) ={veV]|glv}=1)

B={ B, |w(g)=2""""1-2""!, ge D}

Then D = ((Z,)*™,B,€) is a 2 — (2?m,22m—1 _ gm~1 2Im-2 _ 9m-1) gymmetric design with
symmetric difference property.

Problem 3
What sort of finite geometries is related to bent polynomials of odd type?
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