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1 Introduction

In this paper, we consider only finite graphs having at least one edge. For terminology and
notation not defined in this paper, we refer the readers to [3]. Unless stated otherwise, “graph”
means simple graph. A mulligraph may contain multiple edges but no loops. Let G be a graph.
We denote by V(G), E(G) and A(G) the vertex sct, the edge set and the maximum degree of
G, respectively. A set of independent edges in G is called a matching of G. We call a matching
of cardinality m an m-matching. A maximum malching of G is 4 matching of largest possible
cardinality, and by m(G) we denote the cardinality of the maximnn matching of G. which is
called a matching number of G. A perfect matching of G is a matching whosce edges cover all
the vertices of G. A graph is even if it has an even order. A graph is said to be d-regular (or
simply reguler when there is no need to specify d) if every vertex has degree d. Let X be a

finite set. We denote by Xy the set of 2-element subsets of X. For a positive integer &, let

In 2008, Alspach [1] introdnced a new graph invariant for matchings. which comes from
the problem how to schedule a round-robin tournament that cach participant has as mmich
time as possible between games the individual must play. Now let G be a graph. For an
integer &, we call a bijection f : Ny — E(G) a map with sequential k-matching of G if
{fQ), fUl+1),.... f( + Kk = 1)} forms a k-matching of G for cach { with { € Njziyj-r+1- We

detine
ms(G) = max{k : ¢ has a map with sequential A-matching}.

which is called a maiching sequencibility of G. By the definition. the matching sequencibility

of G is clearly at most m(G), and the converse is of course not true (e.g.. if G has a perfect
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matching M and |E(G)| > |M|, then clearly ms(G) < n(G) holds). However. one might
expect that if the matching number is sufficiently large, then the matching sequencibility
is also large. But this is not also true. As an casy observation, every graph G satisfies

|E(G)| > (A(G) = Nms(G) + 1. Because, f is a map with sequential &-matching of G if and
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Figure 1: The wheel graph 1W;

only if |f"(el) - f_l((f2)| > k for two distinct edges € and e2 in G such that they have an
end in common. Therefore. although the wheel graph W, has a (near) perfect matching, it
follows from the inequality |E(G)] 2 (A(G) — 1)ms(G) + 1 that the matching sequencibility
is at most 2 {e.g., sce Figure 1). Considering this sitnation, it would be natural to ask the

following question as a next step.

Question. What kind of infinite family G of graphs satisfies the following?
() There exists a constant ¢ > 0 such that every graph G € G satisfies ms(G) 2 ¢ - m(G).
In (1]. Alspach proved that the set of complete graphs satisties (x)-property. He actually
completely determined the matching sequencibility of a complete graph G by using the Walecki

decomposition of G into Hamilton cycles (or Hamilton paths). Here, for a graph G, if G contains

an even component of order at least 4, then we let 4(G) = 1: otherwise, let y(G) = 0.

Theorem A (Alspach [l]). {f G is a complete graph, then the graph G salisfies ms(G) =
m(G) — v(G).

In |2], Brualdi, Kiernan. Mever and Schroeder pointed out that it is not so difficult to
determine the matching sequencibility of the balanced complete bipartite graph by using the

biadjacency matrix.

Theorem B (sec [2]). If G is a balanced compleic bipartite graph, then the graph G setisfies
ms(G) = m(G) — v(G).

In this research, we focus on the matching sequencibility of regular graphs, and we show that
the set of regular graphs is one of the classes satisfying (#)-property by using the edge-coloring

of the regular graph (i.c., the decomposition of the regular graph into matchings).
Theorem 1. If G is a reqular graph, then the graph G satisfies ms(G) > %m(G y— 1.
The following proposition will be used in the proof of Theorem 1.
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Proposition 2. Let G be « multigraph and M be a subset of V(G such thal it is independent,
and let k be an integer with k < | l%] If wms(G) 2 k, then the multigraph G + M salisfies
ms{G + M) > k.

In fact, we can completely determine the matehing sequencibility of 2-regular nmltigraphs:

that is to say, the following holds.
Proposition 3. If G is a 2-requler mudtigraph, then G satisfics ms(G) = m(G) — v(G).

Using Propositions 2 and 3. we can also obtain the better lower bound than the one of

Theorem 1 for 3-regular graphs having perfect matchings.

Proposition 4. If G is a 3-requiar graph which has e perfect matching, then the graph G
satisfics ms(G) > 2m(G).

2 Outline of the proof of Theorem 1

As mentioned in Section 1, we use Proposition 2 in the proof of Theoremn 1. So, we first prove
Proposition 2.

Proof of Proposition 2. Let G be a multigraph of order n. and let M be a subset of V e
such that M is a matching. Let m = [M] for convenience, and let & be an integer with & € [%]
Suppose that ms(G) > k. and we show that G* = G + M also satisfies ms(G) > k. We may
assume that & > 2. Since ms(G) > k. it follows that G has a map g with sequential A-matching.
Write g(r) = Var_qta, for 1 < r < k and VIGY\ {vi : 1 < i< 2k} = {vaksr, Varszs oot}
Note that

{vyva, 131!1,. oot (= {g(D).g(2). .. .. g(k)}) is a matching of G (1)

because ¢ is a map with sequential A-matcling of G. For cach edge e = vyv; € M, we further
define i(e) = min{i, j}.

We now define the map [ : Nigg-y — E(G*) by the following procedure.

(1) Assign integers 1.2...., m to edges of A so that (1 <) i(f(1)) < ((f(2) < -+ <

i(f(m = 1)) < i(f(m)) (note that we can actually assign integers to Af in this way

because M is a matching).

(IT) Assign integers m+1,m+2....,m+|E(G)| to edges ol G* — Al (= G) so that f(m+7r) =
g(r) for 1 < r < |E(G).

Since g is a bijection from Nyg) to E(G). it follows from (1) and (1) that f is also bijective.
Thus, it suffices to show that the set {f(I). f(l +1)..... f(I + & —1)} forms a matching of G*
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for cach ¢ with { € Njg(g+)j-r+1. Since g is a map with sequential k-matching of G, the set
{g(r),g(r +1),....9(r + k— 1)} is a matching of G for r € Nypay-x+1. Hence by (11), we see
that {f (I+1) .. f(I+k=1)} also forms a matching of G* for m+1 < < |E(G*)|-k+1.

We next show that {f(). f({+1)..... F(I+ k = 1)} forms a matching of G* for 1 <1 < m.
Let [ be an arbitrary integer with 1 </ < m. Since M = {f(1), f(2)..... J(m)} by (I), il
I <m=k+1,then {f(!), fl+1),....f(I + Kk —=1)} is clearly a matching of G‘. Thus we may
assume that § > m—k+2. Sincel < i(f(D)) < --- < i(f(m)) by (1) (recall that i{e) = min{i, j}

for e = vyv; € M), it [ollows that
{f). fUl+1)..... F(m)} is a matching of G*[{v; : 1 < i < n}]

{here. for a graph H and X C V(H), G[X] denotes the subgraph of H induced by X). On the
other hand, by (1) and (II). it follows that

{fm+1), f(m+2).....f(m + <)} is a matching of G*[{v;: 1 < i <1 - 1}],

where e = min {k. |_"T'_| } Thus it is cnough to show that ¢ > I+ & — 1 — m (we see that
the assertion holds il it's trne). If ¢ = &, then obviously ¢ > I + & — 1 — m hokls because
! < . Thus we may assume that € = I_"T'J Il <m-—1, then |_"—'_| -(l+k=-1=-m)>

2

|5 -+ 8] -1-m)>2F -+ —1—-m) =251 >0;if { = m and [ is even,
then |_'—'2ij—(l+l:—l—m) > 2 A+1> ' - [%] = é—- =0;if I = m and [ is odd,
then |Z—(+k-1-m)=5% -k+12> '+' —[3] = % - & = 0. Thus the incquality
s>+ k—1—m holds. O

In order to show Theorem 1, we further use the following proposition. Here, a graph G is
near even 2-regular il cach component of G is isomorphic to an even eycle or a path ol order
at least 2. For a near even 2-vegular graph G, let ep(G) be the number of components which

are isomorphic to an cven path of order at least 4 in G.

Proposition 5. If GG is a near even 2-reqular multigraph, then G satisfies ms(G) > m(G) —
EETE

Now we are reacly to prove Theorem 1.

Proof of Theorem 1. Let G be a d-regular graph of order n. If d = 1, then the assertion
clearly holds. Thns we may assume that ¢ > 2. Since G has a A(G) or (A(G) + 1)-edge-
coloring by a theorem of Vizing [4]. there exists a partition {Ay, M,...., M} of E(G) such
that { € {d — 1,d} and each Af; is a matching of G. We may assume that |Aly] = min{|A/] :
0 < i< U}and M| > |My| 2 --- 2 |My|. Since G is a d-regular graph, [M] > [2]
(otherwise, |E(G)| = zl oMl < G "” = |E(G)|, a contradiction). Let Gy be a graph such that
V(G =V(G) and E(G,) = MU Ml. and we define graphs Ga.. ... .G inductively as follows:
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let G; = Gy + A, for 2 < i < 1. Since
following holds.

M| > |My] = --- > M|, we easily see that the

(D) Hms(Gizy) > 3IMi2i| — L. then ms(Gi-y) > M -1 (2<i<).

Since M. ..., . My are matchings of G. it follows from the definition of G, . . .. G; and Proposi-

tion 2 that the following holds.

(1) Ifms(Gi-1) 2 3IMi| = 1, then ms(G;) = ms(Gioy + AL) > 3|M| -1 (24 <)),

. VG . .
Morcover, since m(G) < &N = LZand |M] > H] we can also obtain the following.

(1) 1f ms(Gr) 2 3|M;| — 1. then ms(G)) > 1m(G) - 1.

l

Thercfore, if ms(G,) > 2|M,| — 1, then by applying (1) and (1I) inductively, we can get
(ms(G) =) ms(Gy) > §|M| - 1, and hence by (111), we have ms(G) = ms(Gy) > 4m(G) - L.
Thus it is enough to show that ms(Gy) > 3| - 1.

Since Ay and Ay are matchings of G, G is a near even 2-regular graph (note that we do
not. mind the isolated vertices in G1). Hence by Proposition 5, ms(G)) > m(G,) - [@J -1.
By the definition of ep(G)), it follows that ep(G,) < “—(:—’)-[ < %. Combining this with the fact
that m(Gy) > |M] > M| > [3]. we get ms(Gh) > m(Gy) — |22 —1> M) - |2] -1 2>
Rt + 321 - (2] - 12 3an - 1

This completes the proof of Theorem 1. O

Remark. In the prool of Theorem 1, if I = d — 1 holds, then {My, AMy...., M} is a 1-
factorization of G, aud hence by applying Proposition 2 inductively, we can casily see that
ms(G) > 5 m(G) Thus. every 1-factorizable graph G satishies ns(G) > %m(G).

References

[1] B. Alspach, The Wonderful Walecki Construction, Bull. [nst. Combin. Appl. 52 (2008)
7-20.

[2] R.A. Brualdi, K.P. Kiernan, S.A. Meyer and MAV. Schroeder. Cyelic matching sequenci-
bility of graphs, Australas. J. Combin. 53, (2012) 245 -256.

[3] R. Diestel, Graph Theory, Fourth edition. Graduate Texts in Mathematics, 173, Springer,
Heidelberg, 2010.

[1] V.G. Vizing. On an estimate of the chromatie class of a p-graph (in Russian), Diskret.
Analiz. 3 (1964) 25-30.

¢n

41



