Matching sequencibility of regular graphs

Shuya Chiba*

Department of Mathematics and Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555, Japan

1 Introduction

In this paper, we consider only finite graphs having at least one edge. For terminology and notation not defined in this paper, we refer the readers to [3]. Unless stated otherwise, "graph" means simple graph. A multigraph may contain multiple edges but no loops. Let G be a graph. We denote by V(G), E(G) and $\Delta(G)$ the vertex set, the edge set and the maximum degree of G, respectively. A set of independent edges in G is called a matching of G. We call a matching of cardinality m an m-matching. A maximum matching of G is a matching of largest possible cardinality, and by m(G) we denote the cardinality of the maximum matching of G, which is called a matching number of G. A perfect matching of G is a matching whose edges cover all the vertices of G. A graph is even if it has an even order. A graph is said to be d-regular (or simply regular when there is no need to specify d) if every vertex has degree d. Let X be a finite set. We denote by $X_{(2)}$ the set of 2-element subsets of X. For a positive integer k, let $\mathbf{N}_k = \{1, 2, \ldots, k\}$.

In 2008, Alspach [1] introduced a new graph invariant for matchings, which comes from the problem how to schedule a round-robin tournament that each participant has as much time as possible between games the individual must play. Now let G be a graph. For an integer k, we call a bijection $f: \mathbf{N}_{|E(G)|} \to E(G)$ a map with sequential k-matching of G if $\{f(l), f(l+1), \ldots, f(l+k-1)\}$ forms a k-matching of G for each l with $l \in \mathbf{N}_{|E(G)|-k+1}$. We define

 $ms(G) = max\{k : G \text{ has a map with sequential } k\text{-matching}\},$

which is called a matching sequencibility of G. By the definition, the matching sequencibility of G is clearly at most m(G), and the converse is of course not true (e.g., if G has a perfect

E-mail address: schiba@kumamoto-u.ac.jp

^{*}This work was supported by JSPS KAKENHI Grant Number 26800083

matching M and |E(G)| > |M|, then clearly $\operatorname{ms}(G) < \operatorname{m}(G)$ holds). However, one might expect that if the matching number is sufficiently large, then the matching sequencibility is also large. But this is not also true. As an easy observation, every graph G satisfies $|E(G)| \ge (\Delta(G) - 1)\operatorname{ms}(G) + 1$. Because, f is a map with sequential k-matching of G if and

Figure 1: The wheel graph W_5

only if $|f^{-1}(e_1) - f^{-1}(e_2)| \ge k$ for two distinct edges e_1 and e_2 in G such that they have an end in common. Therefore, although the wheel graph W_n has a (near) perfect matching, it follows from the inequality $|E(G)| \ge (\Delta(G) - 1) \operatorname{ms}(G) + 1$ that the matching sequencibility is at most 2 (e.g., see Figure 1). Considering this situation, it would be natural to ask the following question as a next step.

Question. What kind of infinite family G of graphs satisfies the following?

(*) There exists a constant c > 0 such that every graph $G \in \mathcal{G}$ satisfies $ms(G) \ge c \cdot m(G)$.

In [1]. Alspach proved that the set of complete graphs satisfies (*)-property. He actually completely determined the matching sequencibility of a complete graph G by using the Walecki decomposition of G into Hamilton cycles (or Hamilton paths). Here, for a graph G, if G contains an even component of order at least 4, then we let $\gamma(G) = 1$; otherwise, let $\gamma(G) = 0$.

Theorem A (Alspach [1]). If G is a complete graph, then the graph G satisfies $ms(G) = m(G) - \gamma(G)$.

In [2], Brualdi, Kiernan. Meyer and Schroeder pointed out that it is not so difficult to determine the matching sequencibility of the balanced complete bipartite graph by using the biadjacency matrix.

Theorem B (see [2]). If G is a balanced complete bipartite graph, then the graph G satisfies $ms(G) = m(G) - \gamma(G)$.

In this research, we focus on the matching sequencibility of regular graphs, and we show that the set of regular graphs is one of the classes satisfying (*)-property by using the edge-coloring of the regular graph (i.e., the decomposition of the regular graph into matchings).

Theorem 1. If G is a regular graph, then the graph G satisfies $ms(G) \ge \frac{1}{4}m(G) - 1$.

The following proposition will be used in the proof of Theorem 1.

Proposition 2. Let G be a multigraph and M be a subset of $V(G)_{(2)}$ such that it is independent, and let k be an integer with $k \leq \lceil \frac{|M|}{2} \rceil$. If $\operatorname{ms}(G) \geq k$, then the multigraph G + M satisfies $\operatorname{ms}(G + M) \geq k$.

In fact, we can completely determine the matching sequencibility of 2-regular multigraphs; that is to say, the following holds.

Proposition 3. If G is a 2-regular multigraph, then G satisfies $ms(G) = m(G) - \gamma(G)$.

Using Propositions 2 and 3, we can also obtain the better lower bound than the one of Theorem 1 for 3-regular graphs having perfect matchings.

Proposition 4. If G is a 3-regular graph which has a perfect matching, then the graph G satisfies $ms(G) \ge \frac{1}{2}m(G)$.

2 Outline of the proof of Theorem 1

As mentioned in Section 1, we use Proposition 2 in the proof of Theorem 1. So, we first prove Proposition 2.

Proof of Proposition 2. Let G be a multigraph of order n, and let M be a subset of $V(G)_{(2)}$ such that M is a matching. Let m = |M| for convenience, and let k be an integer with $k \leq \left\lceil \frac{m}{2} \right\rceil$. Suppose that $\operatorname{ms}(G) \geq k$, and we show that $G^* = G + M$ also satisfies $\operatorname{ms}(G) \geq k$. We may assume that $k \geq 2$. Since $\operatorname{ms}(G) \geq k$, it follows that G has a map g with sequential k-matching. Write $g(r) = v_{2r-1}v_{2r}$ for $1 \leq r \leq k$ and $V(G) \setminus \{v_i : 1 \leq i \leq 2k\} = \{v_{2k+1}, v_{2k+2}, \ldots, v_n\}$. Note that

$$\{v_1v_2, v_3v_4, \dots, v_{2k-1}v_{2k}\}\ (=\{g(1), g(2), \dots, g(k)\})\$$
is a matching of G (1)

because g is a map with sequential k-matching of G. For each edge $e = v_i v_j \in M$, we further define $i(e) = \min\{i, j\}$.

We now define the map $f: \mathbf{N}_{[E(G^*)]} \to E(G^*)$ by the following procedure.

- (1) Assign integers $1, 2, \ldots, m$ to edges of M so that $(1 \le i)(f(1)) < i(f(2)) < \cdots < i(f(m-1)) < i(f(m))$ (note that we can actually assign integers to M in this way because M is a matching).
- (II) Assign integers $m+1, m+2, \ldots, m+|E(G)|$ to edges of G^*-M (= G) so that f(m+r)=g(r) for $1 \le r \le |E(G)|$.

Since g is a bijection from $\mathbf{N}_{|E(G)|}$ to E(G), it follows from (1) and (11) that f is also bijective. Thus, it suffices to show that the set $\{f(l), f(l+1), \ldots, f(l+k-1)\}$ forms a matching of G^* for each l with $l \in \mathbb{N}_{|E(G^*)|-k+1}$. Since g is a map with sequential k-matching of G, the set $\{g(r), g(r+1), \ldots, g(r+k-1)\}$ is a matching of G for $r \in \mathbb{N}_{|E(G)|-k+1}$. Hence by (II), we see that $\{f(l), f(l+1), \ldots, f(l+k-1)\}$ also forms a matching of G^* for $m+1 \le l \le |E(G^*)|-k+1$. We next show that $\{f(l), f(l+1), \ldots, f(l+k-1)\}$ forms a matching of G^* for $1 \le l \le m$. Let l be an arbitrary integer with $1 \le l \le m$. Since $M = \{f(1), f(2), \ldots, f(m)\}$ by (I), if $l \le m-k+1$, then $\{f(l), f(l+1), \ldots, f(l+k-1)\}$ is clearly a matching of G^* . Thus we may assume that $l \ge m-k+2$. Since $l \le i(f(l)) < \cdots < i(f(m))$ by (I) (recall that $i(e) = \min\{i,j\}$ for $e = v_i v_i \in M$), it follows that

$$\{f(l), f(l+1), \ldots, f(m)\}\$$
 is a matching of $G^*[\{v_i : l \leq i \leq n\}]$

(here, for a graph H and $X \subseteq V(H)$, G[X] denotes the subgraph of H induced by X). On the other hand, by (1) and (II), it follows that

$$\{f(m+1), f(m+2), \ldots, f(m+\varepsilon)\}\$$
 is a matching of $G^*[\{v_i : 1 \le i \le l-1\}],$

where $\varepsilon = \min\left\{k, \left\lfloor\frac{l-1}{2}\right\rfloor\right\}$. Thus it is enough to show that $\varepsilon \geq l+k-1-m$ (we see that the assertion holds if it's true). If $\varepsilon = k$, then obviously $\varepsilon \geq l+k-1-m$ holds because $l \leq m$. Thus we may assume that $\varepsilon = \left\lfloor\frac{l-1}{2}\right\rfloor$. If $l \leq m-1$, then $\left\lfloor\frac{l-1}{2}\right\rfloor - (l+k-1-m) \geq \left\lfloor\frac{l-1}{2}\right\rfloor - (l+\left\lceil\frac{m}{2}\right\rceil - 1-m) \geq \frac{l-2}{2} - (l+\frac{m+1}{2}-1-m) = \frac{m-l-1}{2} \geq 0$; if l=m and l is even, then $\left\lfloor\frac{l-1}{2}\right\rfloor - (l+k-1-m) \geq \frac{l-2}{2} - k+1 \geq \frac{l}{2} - \left\lceil\frac{l}{2}\right\rceil = \frac{l}{2} - \frac{l}{2} = 0$; if l=m and l is odd, then $\left\lfloor\frac{l-1}{2}\right\rfloor - (l+k-1-m) = \frac{l-1}{2} - k+1 \geq \frac{l+1}{2} - \left\lceil\frac{l}{2}\right\rceil = \frac{l+1}{2} - \frac{l+1}{2} = 0$. Thus the inequality $\varepsilon \geq l+k-1-m$ holds.

In order to show Theorem 1, we further use the following proposition. Here, a graph G is near even 2-regular if each component of G is isomorphic to an even cycle or a path of order at least 2. For a near even 2-regular graph G, let ep(G) be the number of components which are isomorphic to an even path of order at least 4 in G.

Proposition 5. If G is a near even 2-regular multigraph, then G satisfies $ms(G) \ge m(G) - \left\lfloor \frac{ep(G)}{2} \right\rfloor - 1$.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let G be a d-regular graph of order n. If d=1, then the assertion clearly holds. Thus we may assume that $d \geq 2$. Since G has a $\Delta(G)$ or $(\Delta(G)+1)$ -edge-coloring by a theorem of Vizing [4], there exists a partition $\{M_0, M_1, \ldots, M_l\}$ of E(G) such that $l \in \{d-1, d\}$ and each M_i is a matching of G. We may assume that $|M_0| = \min\{|M_i|: 0 \leq i \leq l\}$ and $|M_1| \geq |M_2| \geq \cdots \geq |M_l|$. Since G is a d-regular graph, $|M_l| \geq \left\lceil \frac{n}{4} \right\rceil$ (otherwise, $|E(G)| = \sum_{i=0}^{l} |M_i| < \frac{dn}{2} = |E(G)|$, a contradiction). Let G_1 be a graph such that $V(G_1) = V(G)$ and $E(G_1) = M_0 \cup M_1$, and we define graphs G_2, \ldots, G_l inductively as follows:

let $G_i = G_{i-1} + M_i$ for $2 \le i \le l$. Since $|M_1| \ge |M_2| \ge \cdots \ge |M_l|$, we easily see that the following holds.

(I) If
$$ms(G_{i-1}) \ge \frac{1}{2}|M_{i-1}| - 1$$
, then $ms(G_{i-1}) \ge \frac{1}{2}|M_i| - 1$ $(2 \le i \le l)$.

Since M_2, \ldots, M_l are matchings of G, it follows from the definition of G_1, \ldots, G_l and Proposition 2 that the following holds.

(II) If
$$\operatorname{ms}(G_{i-1}) \ge \frac{1}{2}|M_i| - 1$$
, then $\operatorname{ms}(G_i) = \operatorname{ms}(G_{i-1} + M_i) \ge \frac{1}{2}|M_i| - 1$ $(2 \le i \le l)$.

Moreover, since $m(G) \leq \frac{|V(G)|}{2} = \frac{n}{2}$ and $|M_l| \geq \left\lceil \frac{n}{4} \right\rceil$, we can also obtain the following.

(III) If
$$ms(G_l) \ge \frac{1}{2}|M_l| - 1$$
, then $ms(G_l) \ge \frac{1}{4}m(G) - 1$.

Therefore, if $\operatorname{ms}(G_1) \geq \frac{1}{2}|M_1| - 1$, then by applying (I) and (II) inductively, we can get $(\operatorname{ms}(G) =) \operatorname{ms}(G_t) \geq \frac{1}{2}|M_t| - 1$, and hence by (III), we have $\operatorname{ms}(G) = \operatorname{ms}(G_t) \geq \frac{1}{4}\operatorname{m}(G) - 1$. Thus it is enough to show that $\operatorname{ms}(G_1) \geq \frac{1}{2}|M_1| - 1$.

Since M_0 and M_1 are matchings of G, G_1 is a near even 2-regular graph (note that we do not mind the isolated vertices in G_1). Hence by Proposition 5, $\operatorname{ms}(G_1) \geq \operatorname{m}(G_1) - \left\lfloor \frac{\operatorname{ep}(G_1)}{2} \right\rfloor - 1$. By the definition of $\operatorname{ep}(G_1)$, it follows that $\operatorname{ep}(G_1) \leq \frac{|V(G_1)|}{4} \leq \frac{n}{4}$. Combining this with the fact that $\operatorname{m}(G_1) \geq |M_1| \geq |M_1| \geq \left\lceil \frac{n}{4} \right\rceil$, we get $\operatorname{ms}(G_1) \geq \operatorname{m}(G_1) - \left\lfloor \frac{\operatorname{ep}(G_1)}{2} \right\rfloor - 1 \geq |M_1| - \left\lfloor \frac{n}{8} \right\rfloor - 1 \geq \frac{1}{2}|M_1| + \frac{1}{2}\left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{8} \right\rfloor - 1 \geq \frac{1}{2}|M_1| - 1$.

This completes the proof of Theorem 1.

Remark. In the proof of Theorem 1, if l = d - 1 holds, then $\{M_0, M_1, \ldots, M_l\}$ is a 1-factorization of G, and hence by applying Proposition 2 inductively, we can easily see that $\operatorname{ms}(G) \geq \frac{1}{2}\operatorname{m}(G)$. Thus, every 1-factorizable graph G satisfies $\operatorname{ms}(G) \geq \frac{1}{2}\operatorname{m}(G)$.

References

- B. Alspach, The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7–20.
- [2] R.A. Brualdi, K.P. Kiernan, S.A. Meyer and M.W. Schroeder, Cyclic matching sequencibility of graphs, Australas. J. Combin. 53, (2012) 245–256.
- [3] R. Diestel, Graph Theory, Fourth edition. Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.
- [4] V.G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian), Diskret. Analiz. 3 (1964) 25-30.