THE GRAPHS OF HOFFMAN-SINGLETON, HIGMAN-SIMS, MCLAUGHLIN, AND THE HERMITIAN CURVE OF DEGREE 6 IN CHARACTERISTIC 5

ICHIRO SHIMADA (HIROSHIMA UNIVERSITY)

ABSTRACT. We present algebro-geometric constructions of the graphs of Hoffman-Singleton, Higman-Sims, and McLaughlin by means of the configuration of 3150 smooth conics totally tangent to the Hermitian curve of degree 6 in characteristic 5, and the Néron-Severi lattice of the supersingular K3 surface in characteristic 5 with Artin invariant 1.

1. Introduction

The graphs of Hoffman-Singleton, Higman-Sins, and McLaughlin are important examples of strongly regular graphs. These three graphs are closely related. Indeed, the Higman-Sins graph is constructed from the set of 15-cocliques in the Hoffman-Singleton graph (see Hafner [10]), and the McLaughlin graph has been constructed from the Hoffman-Singleton graph by Inoue [14] recently.

The fact that the automorphism group of the Hoffman-Singleton graph contains the simple group $PSU_3(\mathbb{F}_{25})$ as a subgroup of index 2 suggests that there is a relation between these three graphs and the Hermitian curve of degree 6 over \mathbb{F}_{25} . In fact, Benson and Losey [2] constructed the Hoffman-Singleton graph by means of the geometry of $\mathbb{P}^2(\mathbb{F}_{25})$ equipped with a Hermitian polarity.

In this talk, we present two algebro-geometric constructions of these three graphs. The one uses the set of smooth conics totally tangent to the Hermitian curve of degree 6 in characteristic 5, and the other uses the Néron–Severi lattice of the supersingular K3 surface in characteristic 5 with Artin invariant 1. See [25] for the first construction, and [15] for the second construction.

2. STRONGLY REGULAR GRAPHS

Let $\Gamma = (V, E)$ be a graph, where V is the set of vertices and $E \subset \binom{V}{2}$ is the set of edges. We assume that V is finite. For $p \in V$, we put

$$L(p) := \{ p' \in V \mid pp' \in E \}.$$

²⁰⁰⁰ Mathematics Subject Classification. 51E20, 05C25.

This work is supported JSPS Grants-in-Aid for Scientific Research (C) No.25400042.

We say that Γ is regular of degree k if k := |L(p)| does not depend on $p \in V$, and that Γ is strongly regular with the parameter (v, k, λ, μ) if Γ is regular of degree k with |V| = v such that, for distinct vertices $p, p' \in V$, we have

$$|L(p) \cap L(p')| = \begin{cases} \lambda & \text{if } pp' \in E, \\ \mu & \text{otherwise.} \end{cases}$$

Definition-Example 2.1. A triangular graph T(m) is defined to be the graph (V, E) such that $V = {[m] \choose 2}$, where $[m] := \{1, 2, ..., m\}$, and E is the set of pairs $\{\{i, j\}, \{i', j'\}\}$ such that $\{i, j\} \cap \{i', j'\} \neq \emptyset$. Then T(m) is a strongly regular graph of parameters $(v, k, \lambda, \mu) = (m(m-1)/2, 2(m-2), m-2, 4)$.

Definition-Theorem 2.1. (1) The Hoffman-Singleton graph is the unique strongly regular graph of parameters $(v, k, \lambda, \mu) = (50, 7, 0, 1)$.

- (2) The Higman-Sims graph is the unique strongly regular graph of parameters $(v, k, \lambda, \mu) = (100, 22, 0, 6)$.
- (3) The McLaughlin graph is the unique strongly regular graph of parameters $(v, k, \lambda, \mu) = (275, 112, 30, 56)$.

Theorem 2.1. (1) The automorphism group of the Hoffman-Singleton graph contains $PSU_3(\mathbb{F}_{25})$ as a subgroup of index 2.

- (2) The automorphism group of the Higman-Sims graph contains the Higman-Sims group as a subgroup of index 2.
- (3) The automorphism group of the McLaughlin graph contains the McLaughlin group as a subgroup of index 2.

See [9], [11], [13], and [17]. See also [4] for constructions for these graphs.

Remark 2.2. Constructions of these graphs by the Leech lattice are known. Below is a part of Table 10.4 of Conway-Sloane's book [7]. See also Borcherds' paper [3].

Name	Order	Structure
-533	$2^4 \cdot 3^2 \cdot 5^3 \cdot 7$	$\overline{\mathrm{PSU}_3(\mathbb{F}_{25})}$
-7	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$	IIS
-10_{33}	$2^{10}\cdot 3^2\cdot 5^3\cdot 7\cdot 11$	HS.2
$\cdot 332$	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$	HS
-5	$2^8 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL.2
$\cdot 8_{32}$	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL
-322	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL
$\cdot 522$	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL.2

3. HERMITIAN VARIETIES

In this and the next sections, we fix a power $q := p^{\nu}$ of a prime integer p. Let k denote an algebraic closure of the finite field \mathbb{F}_{q^2} . Every algebraic variety will be defined over k.

Let n be an integer ≥ 2 . We define the *Hermitian variety* X to be the hypersurface of \mathbb{P}^n defined by

$$x_0^{q+1} + \dots + x_n^{q+1} = 0.$$

The automorphism group $\operatorname{Aut}(X) \subset \operatorname{Aut}(\mathbb{P}^n) = \operatorname{PGL}_{n+1}(k)$ of this hypersurface X is equal to $\operatorname{PGU}_{n+1}(\mathbb{F}_{q^2})$.

We say that a point P of X is a *special point* if P satisfies the following equivalent conditions. Let $T_P \subset \mathbb{P}^n$ be the hyperplane tangent to X at P.

- P is an F_{q²}-rational point of X.
- (ii) $T_P \cap X$ is a cone.

We denote by \mathcal{P}_X the set of special points of X. Then we have

$$|\mathcal{P}_X| = \frac{1}{q} \left(\frac{q^{2(n+1)} - 1}{q^2 - 1} + \frac{(-q)^{n+1} - 1}{q+1} \right).$$

and $\operatorname{Aut}(X) = \operatorname{PGU}_{n+1}(\mathbb{F}_{q^2})$ acts on \mathcal{P}_X transitively. See [12, Chapter 23] or [23], for example.

A curve $C \subset \mathbb{P}^n$ is said to be a rational normal curve if C is projectively equivalent to the image of the morphism $\mathbb{P}^1 \hookrightarrow \mathbb{P}^n$ given by

$$[x:y]\mapsto [x^{n+1}:x^ny:\cdots:xy^n:y^{n+1}].$$

It is known that a curve $C \subset \mathbb{P}^n$ is a rational normal curve if and only if C is non-degenerate (that is, there exist no hyperplanes of \mathbb{P}^n containing C), and $\deg(C) = n + 1$.

We say that a rational normal curve C is totally tangent to the Hermitian variety X if C is tangent to X at distinct q+1 points and the intersection multiplicity at each intersection point is n.

A subset S of a rational normal curve C is a *Baer subset* if there exists a coordinate $t: C \cong \mathbb{P}^1$ on C such that S is the inverse image by t of the set $\mathbb{P}^1(\mathbb{F}_q) = \mathbb{F}_q \cup \{\infty\}$ of \mathbb{F}_q -rational points of \mathbb{P}^1 .

Theorem 3.1 ([24]). Suppose that $n \not\equiv 0 \pmod{p}$ and $2n \leq q$. Let \mathcal{Q}_X denote the set of rational normal curves totally tangent to X.

(1) The set Q_X is non-empty, and $\operatorname{Aut}(X)$ acts on Q_X transitively with the stabilizer subgroup isomorphic to $\operatorname{PGL}_2(\mathbb{F}_q)$. In particular, we have

$$|\mathcal{Q}_X| = |\operatorname{PGU}_{n+1}(\mathbb{F}_{q^2})|/|\operatorname{PGL}_2(\mathbb{F}_q)|.$$

- (2) For any $C \in \mathcal{Q}_X$, the points in $C \cap X$ form a Baer subset of C.
- (3) Every $C \in \mathcal{Q}_X$ is defined over \mathbb{F}_{q^2} , and we have $C \cap X \subset \mathcal{P}_X$.

Remark 3.2. B. Segre obtained Theorem 3.1 for the case n = 2 in [22, n. 81].

4. HERMITIAN CURVES

In this section, we put n=2 and consider the Hermitian curve

$$x^{q+1} + u^{q+1} + z^{q+1} = 0$$

of degree q+1 in characteristic p. Then the condition (ii) above for $P \in X$ to be a special point of X is equivalent to $T_P \cap X = \{P\}$, and, by [8] and [16], it is further equivalent to the condition

(iii) P is a Weierstrass point of the curve X.

The number of special points of X is equal to $q^3 + 1$, and $\operatorname{Aut}(X)$ acts on \mathcal{P}_X double-transitively.

A line $L \subset \mathbb{P}^2$ is a *special secant line* of X if L contains distinct two points of \mathcal{P}_X . If L is a special secant line, then L intersects X transversely, and we have $L \cap X \subset \mathcal{P}_X$. Let \mathcal{S}_X denote the set of special secant lines of X. We have

$$|\mathcal{S}_X| = q^4 - q^3 + q^2.$$

Suppose that p is odd and $q \geq 5$. Then we have $|Q_X| = q^2(q^3 + 1)$. Let $Q \in Q_X$ be a conic totally tangent to X. A special secant line L of X is said to be a special secant line of Q if L passes through two distinct points of $Q \cap X$. We denote by S(Q) the set of special secant lines of Q. Since $|Q \cap \Gamma| = q + 1$, we obviously have |S(Q)| = q(q + 1)/2.

5. GEOMETRIC CONSTRUCTION BY THE HERMITIAN CURVE

In this section, we consider the Hermitian curve

$$X: x^6 + y^6 + z^6 = 0$$

of degree 6 in characteristic 5. We have

$$|\operatorname{Aut}(X)| = 378000, \quad |\mathcal{P}_X| = 126, \quad |\mathcal{Q}_X| = 3150, \quad |\mathcal{S}_X| = 525,$$

and for $Q \in \mathcal{Q}_X$, we have $|Q \cap X| = 6$ and $|\mathcal{S}(Q)| = 15$.

Our construction proceeds as follows.

Proposition 5.1. Let G be the graph whose set of vertices is Q_X and whose set of edges is the set of pairs $\{Q,Q'\}$ of distinct conics in Q_X such that Q and Q' intersect transversely (that is, $|Q \cap Q'| = 4$) and $|S(Q) \cap S(Q')| = 3$. Then G has exactly 150 connected components, and each connected component is isomorphic to the triangular graph T(7).

Let \mathcal{D} denote the set of connected components of the graph G.

Proposition 5.2. Let $D \in \mathcal{D}$ be a connected component of the graph G. Then $Q \cap Q' \cap X = \emptyset$ for any distinct conics Q, Q' in D. Since $|D| \times |Q \cap X| = |\mathcal{P}_Y|$, each $D \in \mathcal{D}$ gives rise to a decomposition of \mathcal{P}_X into a disjoint union of 21 sets $Q \cap X$ of six points, where Q runs through D.

Proposition 5.3. Suppose that $Q \in \mathcal{Q}_X$ and $D' \in \mathcal{D}$ satisfy $Q \notin D'$. Then one of the following holds:

(a)
$$|Q \cap Q' \cap X| = \begin{cases} 2 & \text{for 3 conics } Q' \in D', \\ 0 & \text{for 18 conics } Q' \in D'. \end{cases}$$

$$(\beta) \quad |Q \cap Q' \cap X| = \begin{cases} 2 & \text{for 1 conic } Q' \in D'. \\ 1 & \text{for 4 conics } Q' \in D'. \\ 0 & \text{for 16 conics } Q' \in D'. \end{cases}$$
$$(\gamma) \quad |Q \cap Q' \cap X| = \begin{cases} 1 & \text{for 6 conics } Q' \in D'. \\ 0 & \text{for 15 conics } Q' \in D'. \end{cases}$$

$$(\gamma) \qquad |Q \cap Q' \cap X| = \begin{cases} 1 & \text{for } 6 \text{ conics } Q' \in D', \\ 0 & \text{for } 15 \text{ conics } Q' \in D'. \end{cases}$$

For $Q \in \mathcal{Q}_X$ and $D' \in \mathcal{D}$ satisfying $Q \notin D'$, we define t(Q, D') to be α, β or γ according to the cases in Proposition 5.3.

Proposition 5.4. Suppose that $D, D' \in \mathcal{D}$ are distinct, and hence disjoint as subsets of Q_X . Then one of the following holds:

$$(\beta^{21}) \qquad t(Q,D') = \beta \quad \text{for all } Q \in D.$$

$$(\gamma^{21}) \qquad t(Q,D') = \gamma \quad \text{for all } Q \in D.$$

$$(\alpha^{15}\gamma^{6}) \qquad t(Q,D') = \begin{cases} \alpha \quad \text{for 15 conics } Q \in D, \\ \gamma \quad \text{for 6 conics } Q \in D. \end{cases}$$

$$(\alpha^{3}\gamma^{18}) \qquad t(Q,D') = \begin{cases} \alpha \quad \text{for 3 conics } Q \in D. \\ \gamma \quad \text{for 18 conics } Q \in D. \end{cases}$$

For distinct $D, D' \in \mathcal{D}$, we define T(D, D') to be β^{21} , γ^{21} , $\alpha^{15}\gamma^{6}$ or $\alpha^{3}\gamma^{18}$ according to the cases in Proposition 5.4.

Our main results are as follows.

Theorem 5.5. Let H be the graph whose set of vertices is \mathcal{D} , and whose set of edges is the set of pairs $\{D, D'\}$ such that $D \neq D'$ and $T(D, D') = \alpha^{15} \gamma^6$. Then H has exactly three connected components, and each connected component is the Hoffman-Singleton graph.

We denote by C_1, C_2, C_3 the set of vertices of the connected components of H. The orbit of an element $D \in \mathcal{D}$ by the subgroup $\mathrm{PSU}_3(\mathbb{F}_{25}) \subset \mathrm{Aut}(X)$ of index 3 is one of the connected component C_i of H.

Proposition 5.6. If D and D' are in the same connected component of H, then T(D,D') is either γ^{21} or $\alpha^{15}\gamma^{6}$. If D and D' are in different connected components of H, then T(D,D') is either β^{21} or $\alpha^{3}\gamma^{18}$.

Theorem 5.7. Let H' be the graph whose set of vertices is \mathcal{D} , and whose set of edges is the set of pairs $\{D, D'\}$ such that $D \neq D'$ and T(D, D') is either β^{21} or $\alpha^{15}\gamma^6$. For any i and j with $i \neq j$, the restriction $H'|(C_i \cup C_j)$ of H' to $C_i \cup C_j$ is the Higman-Sims graph.

Using our results, we can recast the construction of the McLaughlin graph by Inoue [14] into a simpler form.

Let \mathcal{E}_1 denote the set of edges of the Hoffman-Singleton graph $H|\mathcal{C}_1$; that is,

$$\mathcal{E}_1 := \{ \{ D_1, D_2 \} \mid D_1, D_2 \in \mathcal{C}_1, \ T(D_1, D_2) = \alpha^{15} \gamma^6 \}.$$

We define a symmetric relation \sim on \mathcal{E}_1 by setting $\{D_1, D_2\} \sim \{D'_1, D'_2\}$ if and only if $\{D_1, D_2\}$ and $\{D'_1, D'_2\}$ are disjoint and there exists an edge $\{D''_1, D''_2\} \in \mathcal{E}_1$ that has a common vertex with each of the edges $\{D_1, D_2\}$ and $\{D'_1, D'_2\}$.

Theorem 5.8. Let H'' be the graph whose set of vertices is $\mathcal{E}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3$, and whose set of edges consists of

- $\{E, E'\}$, where $E, E' \in \mathcal{E}_1$ are distinct and satisfy $E \sim E'$.
- $\{E, D\}$, where $E = \{D_1, D_2\} \in \mathcal{E}_1$, $D \in \mathcal{C}_2 \cup \mathcal{C}_3$, and both of $T(D_1, D)$ and $T(D_2, D)$ are $\alpha^3 \gamma^{18}$, and
- $\{D, D'\}$, where $D, D' \in \mathcal{C}_2 \cup \mathcal{C}_3$ are distinct and satisfy and $T(D, D') = \alpha^{15} \gamma^6$ or $\alpha^3 \gamma^{18}$.

Then H" is the McLaughlin graph.

Proof of Theorems. We make the list of defining equations of the conics in Q_X , and calculate the adjacency matrices of G, H, H' and H''. We then show that $H|C_i$ is strongly regular of parameters (50,7,0,1), $H'|(C_i \cup C_j)$ is strongly regular of parameters (100,22,0,6), and H'' is strongly regular of parameters (275,112,30,56).

Remark 5.9. There are many other ways to define the edges of H and H'. For example, the classical 15-coclique construction of the Higman-Sims graph from the Hoffman-Singleton graph can be rephrased neatly in terms of the geometry of Q_X .

6. Group Theoretic Interpretation

The above construction can be expressed in terms of the structure of subgroups of $Aut(X) = PGU_3(\mathbb{F}_{25})$.

For an element a of a set A on which $\operatorname{PGU}_3(\mathbb{F}_{25})$ acts, we denote by $\operatorname{stab}(a)$ the stabilizer subgroup in $\operatorname{PGU}_3(\mathbb{F}_{25})$ of a. By \mathfrak{S}_m and \mathfrak{A}_m , we denote the symmetric group and the alternating group of degree m, respectively.

Let Q be an element of Q_X . Then $\operatorname{stab}(Q)$ is isomorphic to $\operatorname{PGL}_2(\mathbb{F}_5) \cong \mathfrak{S}_5$.

Theorem 6.1. Let Q and Q' be distinct elements of Q_X . Then Q and Q' are adjacent in the graph G if and only if $stab(Q) \cap stab(Q')$ is isomorphic to \mathfrak{A}_4 . Moreover, Q and Q' are in the same connected component of G if and only if the subgroup $\langle stab(Q), stab(Q') \rangle$ of $PGU_3(\mathbb{F}_{25})$ is isomorphic to \mathfrak{A}_7 .

Proposition 6.2. For each $D \in \mathcal{D}$, the action of $\operatorname{stab}(D)$ on the triangular graph $D \cong T(7)$ identifies $\operatorname{stab}(D)$ with the subgroup \mathfrak{A}_7 of $\operatorname{Ant}(T(7)) \cong \mathfrak{S}_7$.

Theorem 6.3. Let D and D' be distinct elements of D. We identify $\operatorname{stab}(D)$ with \mathfrak{A}_7 by Proposition 6.2. Then T(D, D') is

$$\begin{cases} \beta^{21} & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong \operatorname{PSL}_2(\mathbb{F}_7), \\ \gamma^{21} & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong \mathfrak{A}_5, \\ \alpha^{15} \gamma^6 & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong \mathfrak{A}_6, \\ \alpha^3 \gamma^{18} & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong (\mathfrak{A}_4 \times 3) : 2. \end{cases}$$

Remark 6.4. By ATLAS [6], we see that the maximal subgroups of \mathfrak{A}_7 are

$$\mathfrak{A}_6$$
, $\mathrm{PSL}_2(\mathbb{F}_7)$, $\mathrm{PSL}_2(\mathbb{F}_7)$, \mathfrak{S}_5 , $(\mathfrak{A}_4 \times 3) : 2$.

7. Supersingular K3 surface

First we recall the definition of the Néron–Severi lattice of a smooth projective surface Y defined over an algebraically closed field. A divisor D on Y is numerically equivalent to zero if

$$D \cdot C = 0$$
 for any curve C on Y.

where $D \cdot C$ is the intersection number of D and C on Y. Let S_Y be the \mathbb{Z} -module of numerical equivalence classes of divisors on Y. Then S_Y with the symmetric bilinear form $\langle \cdot, \cdot \rangle$ induced by the intersection pairing becomes a lattice, which is called the $N\acute{e}ron$ -Severi lattice of Y.

A K3 surface Y is said to be supersingular if the rank of S_Y attains the possible maximum 22. Supersingular K3 surfaces exist only in positive characteristics. Suppose that Y is a supersingular K3 surface in characteristic p > 0.

Let $S_Y^{\vee} := \operatorname{Hom}(S_Y, \mathbb{Z})$ denote the dual lattice of S_Y . Artin [1] proved that S_Y^{\vee}/S_Y is a p-elementary abelian group of rank 2σ , where σ is an integer such that $1 \leq \sigma \leq 10$. This integer σ is called the *Artin invariant* of Y. It is known that the isomorphism class of the lattice S_Y depends only on p and σ (Rudakov and Shafarevich [21]), and that a supersingular K3 surface with Artin invariant 1 in characteristic p exists and is unique up to isomorphisms (Ogus [19, 20], Rudakov and Shafarevich [21]).

We work over an algebraically closed field of characteristic 5, and consider the smooth surface Y defined by

$$w^2 = x^6 + y^6 + z^6$$

in the weighted projective space $\mathbb{P}(3,1,1,1)$. Then Y is a double cover of \mathbb{P}^2 branched along the Hermitian curve $X \subset \mathbb{P}^2$ of degree 6.

Proposition 7.1. The surface Y is a supersingular K3 surface with Artin invariant 1. In particular, its Néron-Severi lattice S_Y is isomorphic to the unique lattice characterized by the following properties:

- Sy is even and of signature (1,21),
- $S_Y^{\vee}/S_Y \cong (\mathbb{Z}/5\mathbb{Z})^2$.

In fact, we can give a basis of S_Y explicitly. Let P be a special point of X. Then the tangent line T_P to X at P intersects X at P with multiplicity 6. Hence the pullback of T_P by the double covering $Y \to \mathbb{P}^2$ splits into two smooth rational curves meeting at one point with multiplicity 3. Since the number of \mathbb{F}_{25} -rational points of X is 126, we obtain 252 smooth rational curves on Y. There exist 22 curves among these 252 curves such that their numerical equivalence classes form a lattice of rank 22 and discriminant -25. Therefore they generate S_Y .

The class of the pull-back of a line of \mathbb{P}^2 is denoted by $h_0 \in S_Y$. We have $h_0^2 = 2$. Then the automorphism group

$$\operatorname{Aut}(Y,h_0):=\{g\in\operatorname{Aut}(Y)\,|\,h_0^g=h_0\}$$

of the polarized K3 surface (Y, h_0) is isomorphic to $PGU_3(\mathbb{F}_{25}).2$ of order 756000, where the extra involution comes from $Gal(Y/\mathbb{P}^2)$.

8. Construction by the Néron-Severi lattice

This construction stems from [15]. In an attempt to calculate the full automorphism group $\operatorname{Aut}(Y)$ by Borcherds method [3], we embedded S_Y into an even unimodular lattice L_{26} of signature (1,25). Note that the lattice L_{26} is unique up to isomorphisms. From the lattice data (S_Y, h_0) , the Hoffman-Singleton graph and Higman-Sims graph can be constructed.

Let U be the hyperbolic plane

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,

and let Λ be the negative definite Leech lattice. As L_{26} , we use $U \oplus \Lambda$. Vectors of L_{26} are written as (a, b, λ) , where $a, b \in \mathbb{Z}$, $(a, b) \in U$ and $\lambda \in \Lambda$. Let $\mathcal{P}(L_{26})$ be the connected component of $\{v \in L_{26} \otimes \mathbb{R} \mid v^2 > 0\}$ that contains

$$w_0 := (1,0,0)$$

on its boundary. Each vector $r \in L_{26}$ with $r^2 = -2$ defines a reflection

$$s_r: x \mapsto x + \langle x, r \rangle r$$
.

Let $W(L_{26})$ denote the subgroup of $O(L_{26})$ generated by these s_r . Then $W(L_{26})$ acts on $\mathcal{P}(L_{26})$. We put

$$\mathcal{R}_0 := \{ r \in L_{26} \mid r^2 = -2, \langle r, w_0 \rangle = 1 \}.$$

$$\mathcal{D}_0 := \{ x \in \mathcal{P}(L_{26}) \mid \langle x, r \rangle \ge 0 \text{ for any } r \in \mathcal{R}_0 \}.$$

The map

$$\lambda \mapsto r_{\lambda} := (-1 - \lambda^2/2, 1, \lambda)$$

gives a bijection from Λ to \mathcal{R}_0 , and the group $\operatorname{Aut}(\mathcal{D}_0) := \{g \in \operatorname{O}(L_{26}) \mid \mathcal{D}_0^g = \mathcal{D}_0\}$ is isomorphic to the Conway group $\operatorname{Co}_{\infty}$. Conway [5] proved the following:

Theorem 8.1. The domain \mathcal{D}_0 is a standard fundamental domain of the action of $W(L_{26})$ on $\mathcal{P}(L_{26})$.

By Nikulin [18], we see that there exists a primitive embedding $S_Y \hookrightarrow L_{26}$ unique up to $O(L_{26})$. The orthogonal complement R of S_Y in L_{26} has a Gram matrix

$$\begin{bmatrix} -2 & -1 & 0 & 1 \\ -1 & -2 & -1 & 0 \\ 0 & -1 & -4 & -2 \\ 1 & 0 & -2 & -4 \end{bmatrix}.$$

We denote by

$$\operatorname{pr}_S: L_{26} \to S_Y^{\vee}, \quad \operatorname{pr}_R: L_{26} \to R^{\vee},$$

the orthogonal projections to S_Y^{\vee} and R^{\vee} , respectively.

Theorem 8.2 ([15]). There exists a primitive embedding $S_Y \hookrightarrow L_{26}$ such that $\operatorname{pr}_S(w_0) = h_0$.

In the following, we use this primitive embedding. The set

$$\mathcal{V} := \{ r_{\lambda} \in \mathcal{R}_0 \mid \langle \operatorname{pr}_S(r_{\lambda}), h_0 \rangle = 1, \langle \operatorname{pr}_S(r_{\lambda}), \operatorname{pr}_S(r_{\lambda}) \rangle = -8/5 \}$$

consists of 300 elements. For each $r_{\lambda} \in \mathcal{V}$, there exists a unique $r'_{\lambda} \in \mathcal{V}$ such that $\langle r_{\lambda}, r'_{\lambda} \rangle = 3$, and for any vector $r_{\mu} \in \mathcal{V}$ other than $r_{\lambda}, r'_{\lambda}$, we have that $\langle r_{\lambda}, r_{\mu} \rangle$ is 0 or 1.

Definition 8.3. Let F be the graph whose set of vertices is \mathcal{V} and whose set of edges is the set of pairs $\{r_{\lambda}, r_{\mu}\}$ such that $\langle r_{\lambda}, r_{\mu} \rangle = 1$.

The subset $\operatorname{pr}_R(\mathcal{V})$ of R^{\vee} consists of six elements ρ_1, \ldots, ρ_6 . Their inner-products are given by

$$\frac{1}{5} \begin{bmatrix} -2 & -1 & -1 & 1 & 1 & 2 \\ -1 & -2 & 1 & -1 & 2 & 1 \\ -1 & 1 & -2 & 2 & -1 & 1 \\ 1 & -1 & 2 & -2 & 1 & -1 \\ 1 & 2 & -1 & 1 & -2 & -1 \\ 2 & 1 & 1 & -1 & -1 & -2 \end{bmatrix}.$$

We put

$$\mathcal{V}_i := \operatorname{pr}_R^{-1}(\rho_i) \cap \mathcal{V}.$$

If $r_{\lambda} \in \mathcal{V}_{i}$, then the unique vector $r'_{\lambda} \in \mathcal{V}$ with $\langle r_{\lambda}, r'_{\lambda} \rangle = 3$ belongs to $\mathcal{V}_{i'}$, where $\langle \rho_{i}, \rho_{i'} \rangle = 2/5$.

Theorem 8.4. For each i, $F|V_i$ is the Hoffman-Singleton graph. If $\langle \rho_i, \rho_{i'} \rangle = -1/5$, then $F|(V_i \cup V_{i'})$ is the Higman-Sims graph.

REFERENCES

- M. Artin, Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4), 7:543-567 (1975), 1974.
- [2] C. T. Benson and N. E. Losey. On a graph of Hoffman and Singleton. J. Combinatorial Theory Ser. B, 11:67-79, 1971.
- [3] Richard Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra, 111(1):133-153, 1987.
- [4] A. E. Brouwer and J. H. van Liut. Strongly regular graphs and partial geometries. In Enumeration and design (Waterloo, Ont., 1982), pages 85–122. Academic Press, Toronto, ON, 1984.
- [5] J. H. Conway. The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. J. Algebra, 80(1):159-163, 1983.

- [6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.
- [7] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, third edition, 1999.
- [8] Arnaldo García and Paulo Viana. Weierstrass points on certain nonclassical curves. Arch. Math. (Basel), 46(4):315–322, 1986.
- [9] A. Gewirtz. Graphs with maximal even girth. Canad. J. Math., 21:915-934, 1969.
- [10] Paul R. Hafner. On the graphs of Hoffman-Singleton and Higman-Sims. Electron. J. Combin., 11(1):Research Paper 77, 33 pp. (electronic), 2004.
- [11] Donald G, Higman and Charles C, Sims. A simple group of order 44, 352, 000. Math. Z., 105:110-113, 1968.
- [12] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1991. Oxford Science Publications.
- [13] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. Res. Develop., 4:497-504, 1960.
- [14] Koichi Inone, A construction of the McLaughlin graph from the Hoffman-Singleton graph. Australas. J. Combin., 52:197-204, 2012.
- [15] Toshiyuki Katsura, Shigeyuki Kondo, and Ichiro Shimada. On the supersingular K3 surface in characteristic 5 with Artin invariant 1, 2013, preprint, arXiv:1312.0687.
- [16] Heinrich-Wolfgang Leopoldt, Über die Antomorphismengruppe des Fermatkörpers, J. Number Theory, 56(2):256–282, 1996.
- [17] Jack McLaughlin, A simple group of order 898, 128, 000. In Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), pages 109-111. Benjamin, New York, 1969.
- [18] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat., 43(1):111–177, 238, 1979. English translation: Math. USSR-Izv. 14 (1979), no. 1, 103–167 (1980).
- [19] Arthur Ogus, Supersingular K3 crystals. In Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, volume 64 of Astérisque, pages 3-86. Soc. Math. France, Paris, 1979.
- [20] Arthur Ogus, A crystalline Torelli theorem for supersingular K3 surfaces. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 361–394. Birkhäuser Boston, Boston, MA, 1983.
- [21] A. N. Rudakov and I. R. Shafarevich, Surfaces of type K3 over fields of finite characteristic. In Current problems in mathematics, Vol. 18, pages 115–207, Akad. Nauk SSSR, Vsesoynz, Inst. Nauchn, i Tekhn, Informatsii, Moscow, 1981, Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 657–714.
- [22] Beniamino Segre. Forme e geometric hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. (4), 70:1–201, 1965.
- [23] Ichiro Shimada, Lattices of algebraic cycles on Fermat varieties in positive characteristics, Proc. London Math. Soc. (3), 82(1):131–172, 2001.

- [24] Ichiro Shimada. A note on rational normal curves totally tangent to a Hermitian variety. Des. Codes Cryptogr., 69(3):299-303, 2013.
- [25] Ichiro Shimada. The graphs of Hoffman-Singleton, Higman-Sims, McLaughlin and the Hermite curve of degree 6 in characteristic 5. Australas. J. Combin., 59:161-181, 2014.

E-mail address: shimada@math.sci.hiroshima-u.ac.jp