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ABSTRACT. We present algebro-geometric constructions of the graphs of Hollman-
Singleton, Higman-Sims, and MeLaughlin by means of (he configuration of
3150 smooth conics totally tangent to the Hermitian curve of degree 6 in chiar-
acteristic 5, and the Néron-Severi lattice of the supersingular K3 surface in
characteristic 5 with Artin invariant 1.

1. INTRODUCTION

The graphs of Hoffman-Singleton, Higman-Sims, and McLaughlin are impor-
tant examples of strongly regular graphs. These three graphs are closely related.
Indeed, the Higman-Sims graph is constructed from the set of 15-coclignes in the
Hoffman-Singleton graph (see Hafner [10]), and the McLaughlin graph has been
constructed from the Hoffinan-Singleton graph by Inone [14] recently.

The fact that the automorphism group of the Hoffinan-Singleton graph con-
tains the simple gronp PSU3(Fa5) as a subgroup of index 2 suggests that there is
a relation between these three graphs and the Hermitian curve of degree 6 over
Fas. In fact, Benson and Losey [2] constructed the Hoffman-Singleton graph by
means of the geometry of P?(Fys) equipped with a Hermitian polarity.

In this talk. we present two algebro-geometric constructions of these three
graphs. The one uses the set of smooth conics totally tangent to the Hermitian
curve of degree 6 in characteristic 5, and the other uses the Néron-Severi lattice
of the supersingular /'3 surface in characteristic 5 with Artin invariant. 1. Sec [25]
for the first construction, and [15] for the second construction.

2. STRONGLY REGULAR GRAPHS
Let I' = (V. E) be a graph, where Vs the set of vertices and £ C (‘2) is the
set of edges. We assume that V' is finite. For p € V, we put
Lp):={peV | mweE}
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We say that ' is regular of degree k if k := |L(p)| does not depend on p € V.
and that I is strongly requiar with the parameter (v. & A ) if s regular of
degree k with |V| = r such that. for distinct vertices p.p’ € V', we have

g
L) L)) = {A owre &
pnt otherwise.
Definition-Example 2.1. A triangular graph T(m) is defined to be the graph
(V. E) snch that V = (['.:,'l). where [m] := {1.2,.... m}. and E is the set of pairs
{{i.7}, {7, J'}} such that {i,j} N {7, j'} # 0. Then T(m) is a strongly regular
graph ol parameters (¢, k, A, o) = (mQm = 1)/2, 2(m = 2), m — 2, 4).

Definition-Theorem 2.1. (1) The Hoffman-Singleton graph is the unique strongly
reqular graph of parameters (v b A p) = (50.7.0.1).

(2) The Higman-Sims graph is the unique strongly reqular graph of parameters
(v, k, A 1) = (100, 22,0,6).

(3) The MeLaughlin graph is the unique strongly regular graph of parameters
(v, k, A, g1) = (275,112, 30. 56).

Theorem 2.1. (1) The automorphism group of the Hoffinan-Singleton graph
contains PSU3(Fa3) as a subgroup of index 2.

(2) The automorphism group of the Higman-Sims graph contains the Higman-
Sims group as a subgroup of index 2.

(3) The antomorphism group of the McLaughlin graph contains the McLaughlin
group as a subgroup of index 2.

See [9], [11]. [13]. and [17]. See also [] for constructions for these graphs.

Remark 2.2. Constructions of these graphs by the Leech lattice are known. Below
is a part of Table 10.4 of Conway-Sloane’s book [7]. Sce also Borcherds’ paper [3].

Name Order Structure
533 21.32.5%.7  PSUy(Fas)
7 35701 HS
Ay 210.32.5%.7.11 HS.2
3320 29.32.5%.7.11 HS
50 28.36.50.7.11 Mcl.2
'83-_; 27 - 36 . 53 -7-11 Mel
3220 27.35.5%.7.11 MclL
522 97.38.5%. 7. 11 MeL.2
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3. HERMITIAN VARIETIES

In this and the next sections, we lix a power ¢ := p” of a prime integer p. Let
k denote an algebraic closure of the fnite field F2. Every algebraic variety will
be defined over k.
Let n be an integer > 2. We define the Hermnitian varicty X 1o be the hyper-
surface of P* defined by
23 ettt =,
The automorphism gronp Aut(X) C Aut(P*) = PGL,,, (&) of this hypersurface
X is equal to PGU,,, ((F,z).
We say that a point P of X is a special point if P satisfies the following
equivalent conditions. Let Tp € P* be the hyperplane tangent to X at P.
(i) P is an Fe-rational point of .X.
(i) Tp N X is a cone.
We denote by Py the set of special points of X. Then we have
1 q'..’(u-H) -1 (_q)ll+| -1
Pel = - (4 .
q g -1 g+1
and Aut(X) = PGU,,;1(F,2) acts on Py transitively. See [12, Chapter 23] or [23].
for example.

A curve C C P* is said to he a rational normal curve it C is projectively
cequivalent to the image of the morphism P! — P given by
“yieeiayt iy
It is known that a curve C C P" is a rational normal curve if and only if C
is non-degencerate (that is, there exist no hyperplanes of P containing C). and
deg(C)=n+ 1.

We say that a rational normal cwrve C is totally tangent to the Hermitian
variety X if C is tangent to X at distinct ¢ + 1 points and the intersection
multiplicity at each intersection point is n.

A subset § of a rational normal curve C' is a Baer subsct if there exists a
coordinate ¢t : C = P! on C such that S is the inverse image by ¢ of the set
P(F,) = F, U {oc} of F,rational points of P'.

[0:y)— [ o .

Theorem 3.1 ([24]). Suppose that n £ 0 (mod p) and 2n < . Let @x denote
the set of rational normal curves totally tangent to X.

(1) The set Qyx is non-empty. and Aut(X) acts on Qx transitively with the
stabilizer subgroup isomorphic to PGLy(F,). In particular. we have

lQ\l = |PGU,,+|(F,,'-’)'/lPGLg(]F,,)l-
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(2) For any C € Qx. the points in CN X form a Baer subset of C.
(3) Every C € Qx is defined over Fe. and we have CN X C Py.

Remark 3.2. B. Segre obtained Theorem 3.1 for the case n = 2 in [22, n. 81).

4. HERMITIAN CURVES

In this section, we put n = 2 and consider the Hermitian curve
1.11+I + yq+l + zq+1 =0
of degree ¢ + 1 in characteristic p. Then the condition (ii) above for P € X to
be a special point of X is equivalent to TpN X = { P}, and. by [8] and [16]. it is
further equivalent to the condition

(iii) P is a Weierstrass point of the curve X.

The number of special points of X is equal to ¢* + 1, and Aut{X) acts on Py
double-transitively.

A line L C P? is a special secant line of X if L contains distinct two points of
Px. If L is a special secant line, then L intersects X transversely, and we have
LN X C Px. Let Sy denote the set of special secant lines of X. We have

ISx| = ¢* = ¢* +¢*.

Suppose that p is odd and ¢ > 5. Then we have |Qx] = ¢*(¢* + 1). Let
Q € Qx be a conic totally tangent to X. A special sccant line L of X is said to
be a special secant line of Q if L passes through two distinet points of Q N X.
We denote by S(Q) the set of special secant lines of Q. Since |@NT| =g+ 1,
we obviously have |S(Q)| = ¢(g + 1)/2.

5. GEOMETRIC CONSTRUCTION BY THE HERMITIAN CURVE
In this section, we consider the FHermitian curve
X:ab+yf+25=0
of degree 6 in characteristic 5. We have
[ Aut(X)] = 378000, |Py| =126, [Qx|=3150. |[Sx|= 525.

and for Q € Qy, we have |Q N X| =6 and |S(Q)| = 15.
Our construction proceeds as follows.

Proposition 5.1. Let G be the graph whose set of vertices is Qx and whose set
of edges is the set of pairs {Q,Q'} of distinct conics in Qy such that Q and Q'
intersect transversely (that is, IQNQ'| = 4) end [S(Q)NS(Q')| = 3. Then G has
exactly 150 connected components, and cach connccted component is isomorphic
to the triangular graph T(7).



Let D denote the set of connected components of the graph G.
Proposition 5.2. Let D € D be a connected component of the graph G. Then
QNQ'NX =0 for any distinct conics Q, Q' in D. Since |D| x |Q N X| = |Py].
each D € D gives rise Lo a decomposition of Py inlo a disjoint union of 21 sets
QN X of six points, where Q runs through D.

Proposition 5.3. Suppose that Q € Qx and D' € D salisfy Q € D'. Then one
of the following holds:
for 3 conics ) € D',

2
o ne'nX|=
() l@nQ | {0 Jor 18 conics Q' € D',

2 Jorl conicQ € D,

(3) 1@NnQ'NX|=<1 for conics Q' € D',
0 for 16 conics Q' € D'.

L 1 for G conics Q' € D',

(7) RNA'NnX|= e W Y
0 for 15 conics Q) € D',

For Q € Qx and D' € D satisfying Q € D', we define {(Q. D') to be a, 3 or %
according to the cases in Proposition 5.3.

Proposition 5.4. Suppose that D, D' € D ure distincl, and henee disjoint as
subsets of Qx. Then one of the following holds:

() HQ.DY=3 forallQe D.

) HQ.D')=v forallQe D.
{a Jor 15 conics Q € D,

15,6 1o,
(@7") Q. ) v Jor6 conics Q € D.

a for3 conics Q € D,

318 Ho. DY =
(a®y"%) @.D) {"l Jor 18 conics Q € D.

For distinet D, D’ € D, we define T(D, D') w0 be 3%, 2!, o545 or oy
according Lo the cases in Proposition 5.4.

Our main results are as follows.

Theorem 5.5. Let H be the graph whose sel of vertices is D. and whose set of
edges is the sct of pairs {D. D'} such that D # D' and T(D,D’) = a5, Then
H has exactly three connected components, and each connected component is the
Hoffman-Singleton graph.
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We denote by Cy.Ca.Cy the set of vertices of the connected components of H.
The orbit of an clement 2 € D by the subgroup PSU3(Fa;) € Aut(X) of index
3 is one of the connected compounent C; of H.

Proposition 5.6. If D and D' are in the same connccled component of I1.
then T(D. D) is cither 3% or a8 If D and D’ are in different connected
components of H, then T(D. D) is either 3*! or a®~".

Theorem 5.7. Let II' be the graph whose sel of vertices is D, and whose set of
edges is the set of pairs {D. D'} such that D # D' and T(D. D'} is either 3*' or
a8 For anyi and j with i # j. the restriction H'|(C;UC;) of H' to C,UC; is
the Higman-Sims graph.

Using our results, we can recast the construction of the McLaughlin graph by
Inoue {14} into a simpler form.
Let £ denote the set of edges of the Hoffman-Singleton graph H|C): that is,

£ :={{D1.Ds2} | Dy, Dz €Ci, T(Dy, D) = '™ }.

We define a symmetric relation ~ on &) by setting {Dy, D2} ~ {D}. Dy} il and
only if {Dy. D2} and {Dj. D3} are disjoint and there exists an edge { Dy. D3} € &
that has a conmmon vertex with each of the cdges {Dy. D:} and {D). D}.

Theorem 5.8. Let H” be the graph whose set of vertices is £ U Ca U Cy, and
whose set of edycs consists of
o {E.FE'}. where E.E' € & are distincl and satisfy E ~ E',
o {E.D}. where E = {Dy.D,} € &. D € CUCy. and both of T(D,.D)
and T(Dy, D) are ay"™. and
e {D,D'}, where D, D' € CoUCy are distinct and satisfy and T(D,D') =
a3+ or %418,

Then H” is the MeLaughlin graph.

Proof of Theorems. We make the list of defining cquations of the conics in
Oy, and calculate the adjacency matrices of G, H. H' and H". We then show
that. H|C; is strongly regular ol parameters (50,7.0,1). H'|(C; UC;) is strongly
regitlar of parameters (100.22.0.6). and #” is strongly regular of parameters
(275. 112, 30, 56).

Remark 5.9, There are many other ways to define the edges of H and H'. For
example, the classical 13-coclique construction of the Higan-Sims graph from
the Hoffman-Singleton graph can be rephrased neatly in terns of the geometry
of Qx.



6. GROUP THEORETIC INTERPRETATION
The above construction can be expressed in terms of the structure of subgroups

of Aut(X) = PGUy(Fas).

For an element e of a set A on which PGU3(F,s) acts, we denote by stab(a) the
stabilizer subgroup in PGUy(Fy;) of a. By 6, and €,,,, we denote the symmetric
group and the alternating group of degree m, respectively.

Let @@ be an clement of Qy. Then stab(@) is isomorphic to PGLy(F3) & &;.
Theorem 6.1. Let Q and Q' be distinet elements of Qx. Then Q and Q' are
adjacent in the groph G if and only if stab(Q) N stab(Q') is isomarphic to Usy.
Moreover, Q and Q' are in the seme connected component of G if and only if the
subgroup (stab(Q), stab(@Q’)) of PGUy(Fas) is isomorphic to U;.

Proposition 6.2. For each D € D. the action of stab(D) on the triengular
graph D = T(T) identifics stab(D) with the subgroup A of Ant(T'(7)) = G;.
Theorem 6.3. Let D and D' be distinct elements of D. We identify stab(D)
with g by Proposition 6.2. Then T(D, D) is

i if and only if stab(D) N stah(D’) 2 PSLa(F7).

54! if and only if stab(D) Nstah(D') = U;.

a5 if and only if stab{D) Nstab(D') = Y.

oty if and only if stab(D) Nstab(D') = (Ay x 3) : 2.
Remark 6.4. By ATLAS [6], we see that the maximal subgroups of 2; are

s, PSLy(F7). PSLy(F;). G5, (A3 x 3):2.
7. SUPERSINGULAR '3 SURFACE

First we recall the definition of the Néron-Severi Iattice of a smooth projec-
tive surface Y defined over an algebraically closed field. A divisor D on Y is
numerically cquivalent to zero if

D-C =0 forany curve C on Y,

where D-C is the intersection number of D and C on Y. Let Sy be the Z-module
of numerical equivalence classes of divisors on Y. Then Sy with the symmetric
bilinear form {-,-} induced by the intersection pairing becones a lattice, which
is called the Néron-Severt lattice of Y.

A K3 surface Y is said to be supersingular if the rank of Sy attains the
possible maximmm 22. Supersingular A3 surfaces exist only in positive charac-
teristics. Suppose that Y is a supersingular '3 surface in characteristic p > 0.

-~
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Let Sy := Hom(Sy.Z) denote the dual lattice of Sy. Artin [1] proved that
SY./Sy is a p-elementary abelian group of rank 20, where o is an integer such
that 1 < ¢ < 10. This integer ¢ is called the Artin invariant of Y. It is
known that the isomorphism clags of the lattice Sy depends only on p aud
o (Rudakov and Shafarevich [21]). and that a supersingular A3 surface with
Artin invariant 1 in characteristic p exists and is unique up to isomorphisms
(Ogus [19. 20]. Rudakov and Shafarevich [21]).

We work over an algebraically closed fiekl of characteristic 5, and consider the
smooth surface Y defined by

» . ) .
w? =%+ 8 + 26

in the weighted projective space P(3,1,1,1). Then Y is a donble cover of P?
branched along the Hermitian curve X C P? of degrece 6.

Proposition 7.1. The surface Y is a supersingular K3 surface with Artin in-
variant 1. In particular. its Néron-Scveri latfice Sy is isomorphic to the unique
latlice characterized by the following properties:

o Sy is cven and of signature (1,21),

o SY/Sy = (Z/5Z).

In fact, we can give a basis of Sy explicitly. Let P be a special point of X.
Then the tangent line Tp to X at P intersects X at P with nmltiplicity 6. Hence
the pullback of T by the donble covering ¥ — P2 splits into two simooth rational
curves meeting at one point with iultiplicity 3. Since the number of Fas-rational
points of X is 126, we obtain 252 simooth rational curves on Y. There exist 22
curves among these 252 curves suich that their numerical equivalence classes form
a lattice of rank 22 and discriminant —25. Therefore they generate Sy-.

The class of the pull-back of a line of P? is denoted by /iy € Sy. We have
h2 = 2. Then the automorphisin gronp

Aut(Y. hy) := {g € Aut(Y) | 1§ = ho}

of the polarized K3 surface (Y, i) is isomorphic to PGU3(Fas).2 of order 756000,
where the extra involution comes from Gal(Y/P?).

8. CONSTRUCTION BY THE NERON-SEVERI LATTICE

This construction stems from [15]. In an attempt to calculate the full auto-
morphism group Ant(Y’) by Borcherds method [3], we embedded Sy into an even
unimodular lattice Lyg of signature (1,25). Note that the lattice Lyg is unique up
to isomorphisins. From the lattice data (Sy, hip), the Hoffiman-Singleton graph
and Higman-Sims graph can be constructed.



Let U be the hyperbolic plane

and let A be the negative definite Leech lattice. As Loy, we nuse U & A, Vectors
of Ly are written as (a,b. A), where a.b € Z, (a.b) € U and X € A. Let P(Log)
be the connected component of {v € Ly & R|v? > 0} that contains

wo ;= (1,0,0)
on its bomndary. Each vector r € Lag with 72 = —2 defines a veflection
Sprx— i+ ().
Let 117 (Lag) denote the subgroup of O(La;) generated by these s,.. Then W(Lyg)
acts on P(Lag). We put
Ry = {re€ly| r==2 (rw)=1}
Dy { o€ P(Lag) | {£.r) 20 forany r € Ry }.

The map

Ay = (-1 - /\2/2,1,/\)
gives a hijection from A to Ry. and the group Aut(Dy) := {g € O(Las) | Dy = Do}
is isomorphic to the Conway group Co. Conway [3] proved the following:

Theorem 8.1. The dowmain Dy is a standard fundamental domain of the action
of W(Lag) on P(Lag).

By Nikulin [18], we sce that there exists a primitive cmbedding Sy — Ly
unique up to O(Layg). The orthogonal complement R of Sy in Lag has a Gram
matrix

0o -1 -4 =2
1 0 -2 -4
We denote by
pry: Lag — Sy, prp:Lay — RY,
the orthogonal projections to Sy and RY, respectively.
Theorem 8.2 ([15]). There exists a primitive embedding Sy — Lo such that
prg(tg) = hg.
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In the following. we use this primitive embedding. The sct

Vi={r€Ro | (prs(ra).ho) =1, (prg(ra).prs(ra)) = -8/5}

consists of 300 elements. For cach ry € V, there exists a unigue 4, € V such that
(ra.ry) = 3, and for any vector r,, € V other than ry, . we have that (ra.r,) is
Oor L.

Definition 8.3. Let F be the graph whose set of vertices is V and whose set. of
edgoes is the set of pairs {ry,r,} such that (ry,».) = 1.

The subset prp(V) of RY consists of six clements py..... ps.  Their inuer-
products are given by

St —

O =
(3
!
—
—
|
[\-]
I
—

We put

Vi = prg'(p) N V.
If 5 € V;, then the unique veetor 4, € V with (ry, r}) = 3 belongs to Vi, where
{pi.pir) = 2/5.

Theorem 8.4, For each i. F|V; is the Hoffman-Singleton graph.
If {pi.p) = =1/5. then F|(V; U Vy) is the Higman-Sims graph.

REFERENCES

(1] M. Artin. Supersingular A3 surfaces. Ann. Sei. Ecole Norm. Sup. (4). T:543-567 (1975).
1974.

[2] C. T. Benson and N. E. Losey. Oun a graph of [ollinan and Singletou. J. Combinatoriat
Theory Ser. B. 11:67 79, 1971,

{3) Richard Borcherds. Automorphisin groups of Lorentzian lattices. J. Algebre. 111(1):133
153. 1987.

[] A. E. Bronwer and J. H. van Lint. Strongly regular graphs aud partial geometries. In
Enumeration and design (Waterloo, Ont., 1982), pages 85-122. Academie Press, Toronto,
ON, 1984.

[5] J. H. Couway. The automorphisin group of the 26-dimensional even unimodular Loventzian
lattice. J. Algebra, 80(1):159-163. 1933,

10



[6]

(7]

8

[9]
[10]

(11)

[12]

(13]
[14)
[15]
(16]

7

(18]

[19]

(20]

[21]

J. I Conway, R. T. Curtis, S. . Norton. R. A. Parker. and R. A. Wilson. Atlas of
Jinite groups. Oxford University Press, Eynsham, 1985, Maximal subgronps and ordinary
characters for simple groups, With computational assistance from J. G. Thackray.

J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. volume 290
of Grundlehren der Mathematischen Wissenschaften . Springer-Verlag, New York, third
adition, 1999,

Arnaldo Garcia and Paulo Viaua. Weierstrass points on certain nonclassical cutves. Arch.
Math. (Basel), 16(-1):315- 322, 1986.

A. Gewirtz. Graphs with maximal even girth. Canad. J. Math.. 21:915-931, 1969,

Paul R. Hafuer. On the graphs of Hoflman-Singleton and Higman-Sims. Electron. J. Com-
bin., 11(1):Research Paper 77, 33 pp. (clectronic), 2004,

Donald G. Higman and Charles C. Sims, A simple gronp of order 41, 352.000. Math. Z..
105:110-113. 1968,

J. W. P. Hirschfeld and J. A. Thas. General Galots geometries. Oxford Mathematical
Monographs. The Clarendon Press Oxford University Press. New York, 1991, Oxford
Science Publications.

A. J. Hoflman and R. R. Singleton. On Moore graphs with diameters 2 and 3. I1BM J.
Res. Develop.. 1:497-504, 1960.

Koichi [none. A construction of the McLaughlin graph from the Holfman-Singleton graph.
Austratas. J. Combin., 52:197 204, 2012,

Toshiyuki Katsura, Shigevuki Kondo. and Ichiro Shimada. On the supersingular A'3 sur-
face in characteristic 5 with Artin invariant 1. 2013, preprint. arXiv:1312.0687.
Heinrich-Wolfgang Leopoldt. Uber die Antomorphisnengruppe des Fermnatkorpers. J.
Number Theory, 56(2):256 282, 1996.

Jack McLanghlin. A simple group of order 8398, 128, 600. In Theory of Finite Groups (Sym-
postum. Harvard Univ.. Cambridge, Mass.. 1968). pages 109-111. Beujamin, New York.
1969,

V. V. Nikulin, huteger symnnetric bilinear forms and some of their geometric applications.
Iz0. Akad. Nauk SSSR Ser. Mat.. 43(1):111-177, 238, 1979. English translation: Math
USSR-Tzv. 11 (1979). no. 1. 103 167 (1980).

Arthur Ogus. Supersingular K3 crystals. In Jowrndées de Géométric Algébrigue de Rennes
(Rennes. 1978), Vol. I, volmme 64 of Astérisque, puges 3 86. Soc. Matl. France, Paris,
1979.

Artllr Ogus. A crystalline Torelli theorem for supersingular A3 surfaces. In Arithmetic
and geometry. Vol. [f, volume 36 of Progr. Math.. pages 361 391, Birkhiuser Boston,
Boston, MA, 1983,

A. N. Rudakov and 1. R. Shalarevich. Surfuces of type '3 over fields of finite characteristic.
In Current problems in mathematies, Vol 18, pages 115 207. Akad. Nauk SSSR. Vsesovnz,
lust. Nauchn. i Tekhn. Informatsiic Moscow. 1981 Reprinted in L R. Shafarevich. Collected
Mathematical Papers. Springer-Verlag, Berlin, 1989, pp. 657 T14.

Beniamino Segre. Forme e geometrie hermitiane, con particolare viguardo al easo finito.
Ann. Mat. Pure Appl. (4), T0:1 201, 1965.

Ichiro Shimada. Lattices of algebraie eyeles on Fermat varieties in positive characteristies.
Proc. London AMath. Soc. (7). 82(1):131 172, 2001.

109



110

[2d] Tchiro Shimada. A note on rational normal curves totally tangent to a Hermitian varioty.
Des. Codes Cryptogr., 69(3):299-303, 2013.

{25] Ichire Shitada. The graphs of Hoffiman-Singleton, Higmau-Sims, McLaughlin and the
Hermite curve of degree 6 in characteristic 5. Australas. J. Combin_, 59:161-181, 2014,

E-mail nddress: shimada®math.sci.hircshima-u.ac. jp



