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1 Introduction

A difference set. with the parameters v = 22k = 2"=1(2" — 1), A = 2" 1(2"! — 1) is well known
and has been studicd over several kinds of algebraic structures, which is called Menon-Hadamnard
difference sets (see e.g. [2]. [3]). We showed there exists a family of Menon-Hadamard difference
sets over Galois rings of characteristic of an ever power of 2 and of an odd extension degree ([9].
[10]). Though this family produce no new orders. it has an interesting property, an embedded
structure. That is, the difference set over the Galois ring of characteristic 2" is embedded in the
ideal part of a difference sct. over the Galois ring of characteristic 2742,

The projective limit of Galois rings is a variation ring of a local ficld(sce e.g. [4], [5]). Then the
projective limit of these Menon-Hadamard difference sets is a non-empty subset of a variation
ring of a local field. Thus we have a guestion: does there exist a subset of a local ficld whose
image by the natural projection always gives a difference set over a Galois ring? We give an
example answer to this question. A fawily of Meuon-Hadamard difference sets is obtained from
a subgroup of a variation ring of a local ficld by the natural projections. Furthermore this family
also has an embedded structure. The formal group and the p-adic logarithm function serve an
important role.

We knew p-adic codes were considered by Calderbank and Sloane first [1]. They generalized
cyclic codes from GF(p) to Zp2.0 < & £ ¢, and to the p-adic nnmbers. They showed the
examples of p-adic codes, 2-adic Hamming cedes of length 7. 2-adic Golay codes of length 24,
3-adic Golay codes of length 12. From these examples, they define quadratic residue codes of
prime length n = 8m — [. over Z2~ and proved the self-dual code by appending the first
colunm of a quadratic residue code has mininmun Hamming distauce (2 + 3)/2 and is MDS
code. On the other hand, Lagorce defined codes over p-adic fields similarly to convolution codes
over finite fields directly not by generalizing the codes over finite algebraic structures [6]. The
anthor considered the basic strongly non-catastrophic encoder, and showed it can be encoded
and decoded. The anthor noticed the Hamming distance cannot be introduced from Hanuning
weight of 2-adic codes in Remark.

It is difficult to define combinatorial coucepts over infinite algebraic structures extending themn
defined over finite algebraic structure. We think the frst step is to find some relations between
combinatorial concepts and some coneepts over infinite algebraic structures.
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2 Galois Rings

Let Z be a rational integer ring and denote Z/2"Z by A,. Let o(r) € A,[r] be a primitive
basic irreducible polynomial of degree s and denote the root of @2(x) by €. Then A,[x]/o(x)
is a Galois extension of A, and is called a Galois ring of characteristic 2% and of an extension
degree s, denoted by GR(2", 5). The extension ring of A, obtained by adjoining € is isomorphic
to A, [x]/@(x). For casy reference, we put R, = GR(2".s). R, is a local ring and has a
unique maximal ideal p, = 2R,. Every ideal of R, is pf, =R, 1 <! <n-1 The
residue class field R, /p, is isomorphic to a finite field GF(2°%). We take the Teichmiiller system
T = {0.1.€.--+ .£%'2} as a set of complete representatives of R, /p,.. More details, we refer
the reader to [7].

Any element a of the unit group R is uniquely represented as
a=¢£e= f'(l +2a), 0 € Ryy_;.
The ring automorphism §: R,, — R, as
a'=af + 2+ + 2" 2.
is called a Frobenius automorphism. We define the relative trace T, [rom R, to A, as
Y — 1] !
Tua)=a+at+---+a" .

We define the homomorphism 7,-; : R, — R,,_; as

s—1 s—=1
Tn—l(z ﬁ‘:ér) = Z 71{,.
i=0 =0

where v, = 4 (mod 2""’). ¥; € Ap and 4; € A, ;. The commutative relation
TaatTw =TT

holds.
Lemma 1. ([10]) The additive characters of R,, arc given by

t,",‘,.aj(()) = <:2’:-'.(ﬂn)
where 8 € R, and (an is a primitive 2" th rool of unity.
In what follows. we denote a primitive 2"th root ol unity by ¢an. We let ©(R}) = ZaeR,’,‘ un(a)
and §1(pn) = Y qep, ¥1(0).
Lemma 2. ([10]) For a nonirivial additive character in, we have

WM{RX)=0 and ¥ (p,)=0.
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3 A Necessary and Sufficient Condition

We define the elements
-1
Duy1 = Z a and Dy, = Z (—a)
a€Dyi a€D 4

of the group ring ZR,,+y. The subset Dy, 4y of R,y is a difference set with parameters

(n+1)a n+1l)s (nrhs

277 -1, A=2"2 1272

—_ 2(1:;1!!_

p =20t -1)

if aud only if (n + 1)s is even and

Duni Dyl = (k—20+X Y a
a€Rnt

It suffices to show that for every additive character 17y of Ry

- k=, if B#0,
¥3(Pun D) = { k—A+do=k2 i B i 0

holds. If 3 = 0, then ¢o(Dyu+1) has to be |Dyq| = k. For 3 # 0. ¥'3(Dp4+.) is an element of the
integer ring of the cyclotomic field Q({an+1). Since the principal ideal (¢3(Dy41)) is equivalent
to the principal ideal (y73(Dn+1)) and the ideal (2) is completely ramified in the integer ring of

(n+

Q(Gan+1), the ideal (1r5(Dy41)) is equivalent to the ideal (2 'z”’"), or

(n+1)a

Ya(Dus1) =22 u

where u is a unit of Q({an+1).

4 Local Fields

Let p be a prime number and denote the p-adic absolnte value by | [,. Let Q,, be the completion
of rational ficld @ under the p-adic absolute value and Z, be a variation ring of Q,,. Let fo(x)
be a monic irreducible polynomial of degree s over Z,, which divides x” ' — 1. Assume that
fo(x) = folx) (mod p") be a basie primitive polynomial over GR(p".s) and fp(z) = fo(x)
(imod p) be a primitive polynomial over GF(p®).

We consider the extension K = Q,,(E) by adjoining £, a root of fo(z). The extension K is
complete with respecet to the unique extended absolute value | | of the p-adic absolute value | |,.
As the p-adic ficld @, is a local field, the algebraic extension K is also a local field and the
splitting field of fg(x). Then we note that the prime clement of K is p.

The Galois group of K/Q,, is isomorphic to the Galois group of GF(p*)/GF(p). Let (0} be the
Galois group of K. We define the relative trace of a from K to Q,, as

Triq, =a+éla)+--- + ¢"~(a).
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5 A p-adic Logarithm Function

Ok ={xr € K : |x| < 1} is the variation ring of K and pyc = {or € K : || < 1} is the maximal
ideal of Oy. We define a p-adic logarithm function over K.

Definition 1. Let B = 1 + pOg. We define a p-adic logarithm function logp : B — pOy as
x 2
log, (1 +x) = Y (=1} =
e J
j=
forr € pOy.
The p-adic logarithm fumction satisfies the following equation(see Propusition 4.5.3. in [4]),
log, (1 + )1 +y) = log,(1 + ) + log,(1 + y).
In what follows. we assume p = 2. We have the following lemma.
Lemma 3. Let O be a variation ving of K = QZ(E).

1. The 2-adic logerithin function log, from 1 + 20k to 20y is a homomorphism and the
kernel of logy is {1, —1}.

2. We restrict log, to | + 2200. Then log, is an isomorphism from 1+ 20k to 220,

6 Formal Groups

Let R be a comunutative ring with an identity. We denote the set of formal power scries
S 0@ X™ by R[[X]] and ¥ 0@ X"Y™ by R[[X,Y]].

nan=

Definition 2. A formal group over R is a formal power series F(XN,Y') satisfies the following
propertics

L F(X.Y)=X+Y (mod deg?2).
2. F(X.Y)=F(Y.X).
3. F(X.F(Y.2)) = F(F(X.Y).Z).

Lemma 4. Assume p=2. A power series H{(X,Y) =X +Y +2NY € Og[[X,Y]] is a formal
group over Q.

Proof. We casily check the conditions in Definition 2. a

We introduce a homomorphism between two formal gronps.

Definition 3. A homomorphism h : F — G between two formal groups is a power series
h(X) € R|[X]] with h(0) = 0 such that

hF(X.Y)) = Gh(X). h(Y)).
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H J .
We consider loga(1 + 2x) = ;l(—l)”' 9;—) as a formal power series.

Lemma 5. Assume p = 2. Denote the additive formal group by Go(X.Y) = X +Y. A
homomorphism h from H(X.Y) to Gu(X.Y) is given by

1
h(x) = 3 loga(1 + 2x).

Proof. From h(« + y + 2xy) = %log._,(l +2x +y+2y) = % loga(1 + 2x)(1 + 2y). we have

1 1
ha + y+ 2xy) = 5 loga(1 + 2x) + 5 loga(1 + 2y) = h(z) + h(y).

7 A New Operation

We sce that H(a, 3) converges in Oy for a.3 € Og. Then we define a new operation of Op by
the formal gronp H(X.Y) as follows:

ax* 3 = H(a, ).
The operation defines a new abelian group structure on Og. We denote it by Oj,..

Let p1p : Of — GR(2", s)be the natural projection. For nde Oj;. we define a new operation
* by
12(0) * 1 (3) = in(@ * ).

Then the Galois ring GR(2", s) forms an abelian group with respect to this operation. The
additive formal group by G.(X,Y) introduces the ordinary additions of Ox and GR(2", s).

8 A Family of Menon-Hadamard Difference Sets
We fix an integer mr > 0 and assume # is odd. Let T be a set of a complete representatives of
Ok /pk. We define an additive snbgroup of the ideal pj! = 2"‘0]: as follows:
X(m) = {2"u | Tio,(0) =0 (mod 2)}.
We define a subset X, (j) of p’,‘ by using X' (). that is

X)) = U U U (X(m)—!—?’""a.+2""‘202---+".’jn,,,_j)

ET €T oy, ,ET
for 0 < j < ~ 1. Furthermore put
Ya() = h™ (Xuli)) € 20k
Let in=n—21 — I and put

Vin =20 - 1) = pu(Ya_aa(l)) CR;_,.
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We define the subsct Dyo of ply, as

20—

D, =2 U U €u+2q)

1=0 nel(n-2-1)

Theorem 1. Assume that n is an odd positive integer. The subset

(n=-1)/2
D = U Dp.f-a-l
=0
. . . ) {nil)s (n+1)s
is ¢ Mcnon-Hedemard difference set with the parameters v = 20m40s b = 97 B I

(n4l)a (n+4-1)~
1), A=2 & “Y277 Y — 1), This family of difference sels has an cmbedded structure.

9 Gauss Sums

Let v be a character of the ordinary multiplicative group R, of R,, ;. We assume the order
of X is a power of 2. Then ((€) =1 and

RE(L+ 20) - £°(1 +28)) = ({1 + 20)(1 +28)) = X(1 + 2cv » )

for £'(1+2a). £*(1+28) € R, ,. Hence a multiplicative character { of R, | can be regarded as

a mltiplicative character \ of the group R;,. We extend y as the character of R, by defining
v(a) = 0 for any clement o € p,;y. Denote the trivial character by 1% For a multiplicative
character ¢ and an additive character vy of Ry, 4. we define the Gauss sum over R4 by

G(x.vp) = Y Xaks(a).

ER 41

Gauss suins has the following relation.
Lemma 6. ([10]) For 3 = 2"(1 + 23))€" € Ru+1. we have

3
e

G(X-v) = X7 (57)G(X )

10 The determination of Gauss Sums
We define a multiplicative character  of R, _; as follows

_J1 if ageV(n-20-1).
ilan) = -1 il aggV(m-2-1)

for ag € R;,_, and define the multiplicative charvacter 4 of R,’:+]_, as follows

ile) = €' (1 + 2a0)) = ylao)-

We extend 7 as the character of R, 4y by defining fj(a) = 0 for any clement a € py,41-
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The characteristic fur.ction of Dy is

1
1 ; 1, a € Dy
- Sien) = :
2;)"(“) {0, a# D).
For an additive character ¢,

1
D) =1Y X Fasle =§Z Gl 5).

J=00€R, 1.4

¥a(

[n order to prove Theorem 1, we must deternine the values of G}, 3).

Theorem 2. Put R = Rpyq and p = pryy. GUGL¥3), G(i°,v3) have the following values,

i3 Gl ws) GG )
R* —p' 0 0
pf _pl+1 2"2:..«," 0
p"H - pn—-l 0 0
pn—-l _ pn—l-+-| 0 _‘_)(ﬂ—l).'i“
pn—l-+-l 0 2:1—!(2.»: - I)

where u is a unit of Q({gnri-1).

Proof. Put M =n+1-1.
(1) Assume 3 € R,,H P£1+1 and put 3 = 2"¢'(1 + 23p). 0 < h < 1. From Lemma 6, it suffices
to determine the values of G(7P. van ).

N¢;

GG )P = Y () Y i @) (~d)
VERY, dERY,

Y @) (=8) Y P (80)¢n(0)

deRY, VERY,

D 7)Y el - 1)9).

PERY, seny,

We calculate the inner sum Zaem, P ((0 — 1)d). Assume that 6§ -1 ¢ p‘" I-h e put

0=14+26,0<u< M-1—-h,0 € R"{,_l_". From the commutability between the trace
function and the homomorphism, 7ay_,—1Ty; = Tar—war—n mentioned in Section 2.

24T (00d Tas_ul(@od
Z v ((0 - 1)6) = Z ()u 1100d) _ Z Cr)\‘ll u( o3)
dERY, dER, sy,

where 8 = Tar-u(6). 0y = Ta_u(#y). Thus we obtain

> (@ -18) =0.

SERY,
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Next let 2"(0 - 1) € p" ' —pdl. we have

Pry0-ns _ Ryl 1r(003 n—l)s
21)1(9—1)0 Z( ! W Z (=) wd) — _oln=1)
seRy, dERY, Becir(2ey

where tr is the absolute trace from GF(2*) to GF(2). If2"(# ~ 1) € p}f then

Y w8 - 1)d) = [Ry| =202 — 1),

sERY,
Henee
> w(@-ns) = 3 G
dERY, JERy,
0 Ir 0 _ 1 ¢ p\l —h-— l
= _2(11-—')»’ it 0-1¢ p\l -h- l p:; h.
20=Dr(x — 1) if 9-1¢€ p‘” h,
Assume that 8 — 1 = 2M-h-lg, ¢ pj};""” p“ ~k with Oy € p,’,‘ﬂ. There cxists an element

t_y\l—-h—‘)éﬂ — -211—1—[:-10.0 € 2:z—l—h—10’>i‘ c - -2 10;: such that “M(-'_)n—l—h—-ll)") = '_’"—l—h-IO().

From 27~-h=1gy = 2n-2A-1(21=hgy), Ty /0. (2""00) = 0 (nod 2). Thus 2¢~-4=14, € W(n -
20 — 1), that is 2"~ "-"~lgy € V(n =20 = 1).

Hence . )
Z V() = Z 7]’(2"""'_'()“) _ 2!;3(25 ~1).
o-lepyfht—piih ta€R,,
If6 -1 ¢ 2¥-1g, with 8, € pg. then from T,\-/Qz(‘l"""ﬂ'o) =0 (mod 2).
Z ,})(0) = Z ”j(2n—l—h(’“) = .v_,hs‘
#-1epy; " MER,

Thus we obtain
Neg = _2(11—[)321‘15(23 -1+ 2(1;—!)3(23 _ l).gh.ﬂ =0,

then it follows G(ip. ¢ ) =0forj=0.1.
(2) Assume that 3 = 2€'(1 +23) € p!, p'\‘;' It suffices to determine the value of G(7;. tar).
Similarly to the case (I), we have
. 0 it 0—1¢pd-t-1,
Z ot Taf(o-18)  _ _olu=0a it 0-1¢ pv -1 p:f "
seR% 2n-hr(2s — 1) i f-1epih.

106 -1 =2M-1=1g, ¢ p3='=1 — p}i~'_ then

Z f]’({)): Z .,ri(gn»‘.’l—l()o)_: Z ’ri(.-)_n-‘.’l—]()o)_ Z ,rj(rln—ﬂ—len).

0—|€p‘l -t-1 p;;" ()UGR"‘H OoER 1y Da€piii
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Let 2¢-2-1gy € 22~ 2=10, such that jar(2°~210y) = 2n=2-19,. If 0o € pr, then 221G, €
X(n-2t—1)and 22219, € V(n — 21 — 1). Thus

Z ’Ti(2"_21-100) — 2!.0.

0oEP 14,

[f Gy runs through Og. then 8y = j13(0) runs through Ry.;. Therefore
) o{t+1)s ifi=0
on—21-1 —_ = ' uy ’
Z (2 90)—{0‘ if j=1,
fER 4 ’
Thus we have ol fi=0
e | =2 iftj=0,
Z 'T'(o) - { :_)l.«(-z.u — l). lf_] =1.

MoT-1 M-
o-1epy "' pf

Next we assume 8 — 1 = 2V-1g, ¢ p:}f". Similarly to the above,
> ipe)=2"

o-1ep

Conscquently,

v o [ 20O — 42t — )2t =0 i =0,
NG = _2(-|—I)x(_2ls) + 2(11—1).-;(23 _ ])2h| = 2(n+l)s lf] =1.

Hence |
GG vr) =0, Glih ) = 2°F5u

. . . ~ nel . R
where « is a unit of Q(Car). It follows G(7),43) = 2"’ where ' is a unit of Q(Car)-

{3) Assume 3 € p"H, I+1<h < n-1 Similarly to the case (2),

n

0 it o—-1¢py ",

22Ty ((0-1)6 —Ds . A —h— ~h
Z C.\f w{( )8) = _2(" 1) if 0-1¢ p‘” h=1 _ P:; I.

sev’y 2n-Dsg2s — 1) ir 0-1€py™

Let 0 —1€pi™ " —ph .
pEy = Y ettty
0-1epl{ =" pd " foER Y,
- Z lrj(2n—l—h—100) _ Z ,”j(rzn—l—h-—l()u).
OER 41 MEp 1+

Notice that 2"~1="=10y. = 2°-2-10 If the clement §y such that yiys(8y) = 6y runs through
O, then 8y runs through R,,,,. Therefore

Z ,’(2r:—l—h—10‘)) =0
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and also

z 1;(2"""‘"'0(.) =0.

O0€P )
Then

Z #)=0, and Z PO) = 2"(2* — 1).

0-tepy "' -p " o-1epyy "4t -p
10 —-1¢€pif-" then
iy oA if j=0,
2 "'(0)‘{0 if j=1.
o-tepd{ "

It follows N = 0, that is, G(:}j.',-"gf.) = G(iY.v3) = 0. We assume h = n — 1 and put 3 =
21N (1 + 28).

j i o ~Ip, ' .
G(ﬁ".l/’;f) = Z ,*r}(,y)(‘ju Par (€4(14280)7)
“ERY,
2 -1
- z 7{(%0) z (=1)Tr(E (42301 422)
“mE‘R‘\,,l w=0
= 2"_’(2(i -1) if j =0,

If h > A, then

' . n~lfos _ if 1 =
N ENY ff(‘r)={(2, #=0 ;H::j

“€Ry,

[t completes the proof of the theorem. o

11 The Proof of the Main Theorem

. . R R . (rutd)s e o (n+l)s
As mentioned in Section 3, we verify ¢3(D) = 2 7ol if3#0and (D) =2"2 (2

1) if 3 = 0, where « is a unit of Q(¢an+1). Since X(m) is a subgroup of 207 with index 2,
Y((j).0 £ j € m—11is asubgroup of 2'0;\- with index 2. It leads |V (n — 21 — 1)| = 20—~
Thus

n4l !n
2

tnvlls 1 Or41)a
2 —z

(D) = Z 20—l _ 1) =2 ~1).

=0
We denote the correspouding clements of Dy« | anel Dpl+l by Dy » | aml DP‘+.' We display
0 n a4 n
the values ¢3(Dpx l), w3(Dp l) 1<i< 15—'— from Theorem 2, which is a similar table as in the
"+ "+

paper [10]. For convenience, we put R* = RX_, and p' = p!,, . Notice that resultant difference
sets and the constructions are different from them in the paper [10].
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I Vg(Ppx) ¢a(Dp) (D, o) L"’:i(ng,}_w) !»":i('ng_,-;_l.)
R £27F ! 0 0 0 0
p-p? 0 Pl il 0 0 0
pl—pitt 0 0 42 0 0
wod  om- ) ' ) n-l‘._
R 0 0 0 25! 0
"o n. ngl
pirt i 0 0 0 0 241y
v ey wpd
i 0 0 0 0 —p% !
nys n nelt ol X
pi - 0 0 0 -2t el
prei _ pn-isl 0 0 —2tn=bya 2% et L) 2®FHemi@e oy
V"‘l —pn 0 ~ln=1)a=1 2(n~l).-~—l(2- -1) 2%1—"-’(2.- -1 2""’5"5'|(25 -1
pr - {0} _ana—l| 2(11-1]141(4_7: - ’) 2(11-!):--—!(-2- -1) 2-"—.3'-53— 1(25 -1 2%1—I(25 -1
nel

[t is easily verified that yy(D) = 2 F i for 0 <1 < 252 where u is a unit of a cyclotomic
ficld Q(Can+1) from the above table. The construction shows a family of these Menon-Hadamard
difference sets has an embedded structure.
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