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1 Background and motivation

C.E. Shannon (3], “A mathematical theory of communication™ (1948)

Cyclic codes, pseudo-cyclic (PC) codes, low-density parity-check (LDPC) codes, - - -

Generator and parity-check polynomial matrices of quasi-cyclic (QC) codes and their
identical equations (Lally-Fitzpatrick [2], 2001)

Generator and parity-check polynomial matrices of generalized quasi-cyclic (GQC)
codes and their identical equations (Van--Matsui-Mita (8], 2009), (Matsui [5], 2010)

(Today) Generator matrices of generalized pseudo-cyclic (GPC) codes and their
identical equations (Matsui [7], 2014)
(F,Jz) — Z)

o (Today) Generator matrices of generalized integer codes and their identical equations
(Matsui [6], 2014)

@ — zy )

o (Today) Generator matrices of codes over Gaussian integers and their identical equa-
tions

e (Future works) Application to searching and constructing efficient codes for various clas-
sical and/or quantum channels

¢: a rational prime power, F,: g-element finite ficld,

F,[z]: ring of one-variable polynomials over F,, (d): ideal generated by d
Cyclic codes: ideals in Fy[z]/ (" - 1)
QC codes: submodules in (F,[2])/ (" — 1))

I
GQC codes: snbmodules in @]F,,[;r] /™ = 1)
i=1

Pseudo-cyclic (PC) codes: ideals in Fy[z|/ {d)

!
‘Gencmlized PC (GPC) codes ‘: subiiodules in @ F,[x]/ {d:)

i=1

!
|Gencmli'/.cd integer codes |: subgroups in @Z/ {d)

i=|

i
[lecs over Gaussiatt intcgcﬂ: stibmodule in @Z [\/—ll /{d)

=1




2 Definition of codes over some Euclidean domains

R:=17,F,z], or Z[V=T] (a class ol Euclidean domains)

R/ {d;): quotient ring modulo d;, where d; € R is nonzero for all 1 < i <1

]
M= @R/(th) ={{ar.-+- ) |a; € R/ {d). 1 <i <)
i=1

Fora=(ay,-,a;),b=1_(by,--- ,b) € Mand [ € R, definc
a—b=(a,-b.-- .qq-b)eM, fa:=(far.---. fa;) € M.
then a — b€ M and fa € M. that is. M is an R-module.

Definition 1 A code C C M is defined by an R-submodule.

From now on, C indicates a code.

Natural projection

F: R — M
(cr.-- ,e) — (ermoddy, -+ - copmod dy) .
e If C € M is a code, then D := F~'(C) is an R-submodule of .
¢ D = F~Y(C) includes polynomial vectors of the form, for | <i <1,
(0.--- 0. dy. 0.~ .0) < F"'((().--~ .0)). (1)
_
which is considered as another expression of zero codeword (0,--- .0) € M.

e Conversely, if an R-submodule D C R includes (1), then F(D) =: C € M is a code.
¢ Thus there is a one-to-one correspondence between

{ R-submodule D C R' | D includes (1)} «— { R-submodule C C M}.

3 (Generator matrix G

Definition 2 Let G € M(R) be an 1 x | matriz whose rows are in C. Then G is called a
gencrator matrix of C if G is of the following form

Ga SN2 o G
0 g2 - gu
0 - 0 gu
where, for all 1 < i < 1, gi; is nonzero and g;; = “Ililn {ei] (0044 0.6+ .cr) €C. ¢ # 0}

and | -| denotes Euclidean function. If g ;| < \gjj| for all 1 < i< j <. then G is reduced.

3
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e For each code, there uniquely exists the reduced generator matrix if g;; is appropriately
chosen by multiplying v € R*.

Proposition 1 (Necessary and sufficient condition of codewords)

Fore=(cr,- .¢) € M. we have c € C <> ¢ = fG for some f = (fi,---. fi) € R".
In other words, F~'(C) = R'G.

4 Identical equation AG = diagld,,--- ,d|]
The R-submodules in R which come from some C C M by F~! are characterized by
Proposition 2 (Identical equation of G) Lel G = (g;;) € M(R) be an 1 x | upper trian-

gular matriz. Then there caists a C C M with generator matriz G if and only if there exists
an | x 1 upper triangular matriv A = (a;;) € M(R) such that

d 0 --- 0
. 0 (l'_) e : . N .
AG = diag|d,,--- .di] = ‘ . ( identical equation of G )
TP |
0 -« 0 4

e This proposition describes when G decides a code in M.
e On the other hand. any upper triangular matrix G € M;(R) decides at least one code in
M = (R/fR) for f :=det(G) (we will sce later).
The cardinality of C
Cousider the following composition map
F(.
R %S p T
(er.o-- ey — (eymoddy.--- .qgmod dy)G.
Then, the kernel of this composition map is equal to R/ A because
F{{ci.o-.e)G) =0 <= (e1,--- ,c1) G € Rdiag [dh - . di

= (.- .q)G € RAG
= (01, ,0) € RIA

q(lt-gdt'.!(ﬂ) R= F‘[[“”'] follows
|det(A)] R=zZorz[/=1] O™
from elementary divisor theory. If 4 = (¢, ;) = det(A) = H:.=l ;= l_[f.=1di/g,-_,~ because
@;.i0i; = d;. Thus we have

Heuce R'/R'A = C. On the other hand. |R'/R' 4| = {

n~deg det () deg det ()
q = |M|/q .
IC| = { |M|/|d|ct.(cl;'/)l|, 1 = F,[+] = dimg, C = n — deg det(G).



5 Basics of Hecke rings

finite

H(I', Q) = { 3 ¢colall

a€A

o € Z} I:=SL(R), A := {a € AL(R)| det(rv) # 0}.

H(T, ) is called a Hecke ring [4] with respect to T and A with a commmtative multiplication.

o T'al’ = I'diag[b;.--- .| for unique b.|b2| .. |1), € R (elementary divisors); thus we may

assunie a = diaglby. - -- . &): then we denote T'(by,--- . &) := CaTl.

o T(by, - .b) =W Tarwithd=[[:TNa;'Tay < oo

o {Far}igpcq ¢ {Ia(:t,ice DcCR | R/D=@_, R/ (b,-)} by Tay = D := Rlay

Tlms we define ind (T'(by.- -« .by)) :=d and ind (3_, caTal) := > e ind (I'al).
a = diaglby. - .by] = ind(Tal) = # {ID C R IR’/D =@, R/ (bi)}

It is shown that ind(-) (deg(-) in Shimura’s book) is a ring homomorphism of H(T', A).

Multiplication in Hecke rings
There exists finite decomposition FaT'3T = I, TET because
Tal = 4Ta;. T3l = UI 3; = Tal3[ = | JTal3; = | JTa;3;.
i J [N

Then, we define
Il 31" = Z'mf(a,,’f) [er e H(TL,A)
3
where

me(a.3) = #{(i. j) | Fa;3; = T'€}.

{me(a. 3)} does not depend on the choices of {a;}. {3;}. and {£}.
There is another formula ind (UEF) me(a, 3) = # {(i.j) | Ta,3;,T = TEC}.

ind (Tal’ - I'3TN) = Z ind (e me(a, 3) = # {all (i.j)} = ind (I'aT’) - ind (3T)

6 Connection of Hecke rings with our codes

Let M = (R/fR) = R'/J 1.
For nonzero [ € R, define 7(f):= ) Tal' € H(T,A).

a€A,det{a)=f

t {
R/D=EP R/ []b: = f}

i=1 ll

M/C = @R/b}? Hb_ }

ind (T(f)) = # {D C R

- #fec

27



28

e D—C=F(D)=D/fR and C— D = F~!(C) are inverse.
o If D C R with R'/D = @!_, R/b:R and [[._, b; = f, then we have D D fR'.
e The condition of (2) <> det(G) = f hecause

C=R/RA=RG/fR" and M/C=R/RG.
R=2Z=ind(T(f) = #{DC Z' | |Z/D| = If|} = # {C c M| |IM/C| =]}

Calculation of ind (T(N)) by generating function

e For nonzero f,g € R, ged(f.g) = 1 = T(fg) = (f)T(g) Thus we can compute
ind (T(N)) by caleulating ind (T'(p%)) for prime power p | N,

e Irreducible factor power 7¢ | f=T(=")= Z T(z",... .7%)

0<dy £--<dy
dy+---+dy=e

T(p*) and ind (T(p")) have gencrating function

! -1

T(7°) X = [Z(_])krk(k—l)/zTA{l)Xk

k=0

oc

e=0
-k

r—’ﬁ ,_A_
where TS) =T(,--- 1.5+, #) and

deg v —_ .
_ _J 1 R =F,la]
"R/“m’{ "l R=ZorZ[/=1].

and ind (T(p*)) can he computed by

-1
Zmd(?(w X = [Z( 1)* k=129 (T(”) \"]

k=0

2

= l = e -1y, e
_(1_"Y)(l_,'1\’)"‘(1—]'1—'/\’)—Z Z ,1...7 1 1\.

e=() 0Ldy o iy
dy+datpdp=c

Thus, all reduced G with det(G) = =° of C € (R/7*R)' are

™ g2 o gu

0 = - : where di+---+dy=cand |g; j| < |w"}|
.. . au ) "] forall i <j.

o ... 0 ]
because the number of these matrices agrees with ind (T(p%)).
Summarizing  f=a{'.-qt = T(f)=T(a}) - T (7)) =
By the multiplication, all G of C C (R/fR)" with deg(G) = f arc obtained. Note that the
multiplication of two reduced generator matrices is not reduced in general, e.g..

(52)(03)=(5¢)
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7 Examples

(a) Generalized integer codes [6]

Example 1 I=1.dy =6, F:Z = Z/6Z D C = gZ/6Z with g = 1,2,3,6. (subgroup in Z) =
mZ, bnt £~V (gZ/6Z) = gZ. (The identical equation Ag = 6)

Example 2 Consider a subset C, of M :=Z/10ZEP Z/12Z
C = {(0.(1). (0.1). (0.8), (5.2). (5.6). (5. 10)}.
Because €y forms a subgroup, €y is a generalized integer code. Note that C) = £1(5,2) + f2(0,4)

5 2

with fi € {0,1} and f; € {0.1.2}. The generator matrix of C, is equal to G, := 04 )

oy . - 2 -1 52y (100
I'he identical equation of G is eqnal to ( 0 3 ) ( 0 4 ) = ( 0 12 )

Example 3 If / = 4 and M = (Z/20Z)", then an example of identical equations is shown by

20 -16 -11 23 1431 2000 0 0
0 4 -1 -3 05119] [0 2 00
0 0 5 - 00416 | | 0o 0o 2 0
0 0 0 1 000 2 0 0 0 20

Example 4 In the casc of { = 3 and p = 2, ind (7'(2°)) is computed by

~ | | |
. Q¢ "¢ — _ =1 X 3{1\'.’ 155-\’] + 651X4 b
;“m(l(T( ) X 7% 3 LI 80 L T7X + 3502 +

For example, we have ind (7(2%)) = 35. On the other hand. because we have
T(2*%) = T(1.2.2) + T(1.1.4). all reduced generator matrices are

1 x 1 0 = .

( 2 ;) (8) ( 1 T) (16)
2 0 * 1 = 0

( I 3) {4) ( 4 (lJ) 1)
2 0 4 00

( 2 ll)) (2 ( 1 (l]) (1.

where {-) indicates the number of generator matrices of that type. Thus we can list all 35
generator matrices of C C (Z/4Z)" with |C| = 42.

N ¥

(b) Codes over Gaussian integers

Example 5 Let R := Z[\/—l . l=1d =5 F: R = R/IHBR DC = gR/SR with
g=1,-1£2/71.5. (submodule in R) = aR, but F-' (¢R/51) =gRforg=1,-1£2y/-1,5
(The identical equation Ag = 3)

|
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Example 6 Let R :=Z [V/—1]. Consider

(4+2v-1,2 + 1/=1),
(34 4v—1,4 + 2y/=T),
Cy:i=< (2+ 1V=1,1+3V=1), 3 C M =(R/5R).
(1+3V-1,3+4V-1),
(0,0)

Becanse € forms an R-submodule, Cy is a code over Gaussian integers. We note that the
generator matrix of Cs is equal to

, (—1+2\/—_1 2+\,/—_1)
Gg:= 0 5 .

The identical equation of G2 is equal to

(713 VT (T ) (38

Example 7 Incascof R:=Z [\/—l| and ! = 3, ind (T (7)) with # = =1+ 2y/—1is computed
by

oC
1 , ,
D nd(T (z%)) X = =14 31z + 806X* + 20306 X> + - - - .
=0

T 1 =31X +155X2 — 125 X%

For example. we have iud (T(72)) = 806. On the other hand, because we have
T(7*) = T(l.7.7) + T(1.1.7%). all reduced generator matrices are

( 1

( T

( w
where (-) indicates the nnmber of reduced gencrator matrices of each type. Thus, we can list
all 806 reduced G for C C (R/72R)? with |C] = |z|' = 5.

—
—_—

B =) *
—ce H % % S % ¥
\—-/ v
S -
S
TN T N TN
=N —_
[ )
— 0 et
A % ox
—_—oo =2 &
\n——/ v
—— -~
— o
S cl
\b‘

(c) Generalized pseudo-cyclic (GPC) codes [7]
Example 8 Let R = F,[z].
Imcascof l=3and g =2, weset dy =da =dy = (1 + 2+ 24)°? = 1+ 2° + &% Consider

1+ 42 1+ 40 P23+t 428 1 l+x+02 r+024+0540°
A= 0 1 +x+a3 r+a? . G=] 0 l4z+2 e+t 400
0 0 1 0 0 1422428

Then, we have

AG = diag [l 2t a2t 1?42t 142+ ;1:6] .

8



Let € be the GPC code defined by G. Then. C € M with [M] = 2!8 and |C| = 2°.
A binary generator matrix G of C can be derived from G:

/ 100000 | 111000 ] 011101 \
010000 | 011100 | 100110
001000 | 001110 [ 010011
000100 | 000111 | 100001

G = | 000010 | 101011 111000
000001 | 111101 | 011100
(000000 | 110100 | 010111
000000 | 011010 | 100011
\ (000000 | 001101 | 111001
Exainple 9 In the case of I = 3 and ¢ = 2, ind (T (")) with 7 = 2% + & + 1 is computed by
x
| .
md(T (7)) X* = =1+2IX + 357X +5797X% + ...
gnm( (T (=%)) 121 £ 8IN% —GING 357N +5797X7 +

#2)) = 357. On the other hand, hecause we have
t2), all reduced generator matrices are

I 0 «*
) @ ( e ] ey

(16)

For e\.nnplo we have ind (T (7
T =T(.=x,7)+T(. 1=

(l
(ﬂ'
T 0 72 0
(it (7

where (-} indicates the number of reduced generator matrices of each type. Thus, we can list

all 357 reduced G for € C (R/7*R)® with |C] = (22)' = 2%,

Example 10 (A zeta function) From the above argument, we can extract some properties
of a certain zceta function.

x . P (-1 -1
7o p—sdegT ind (1 (ﬂ" )) — 1 R
X:i=¢ R == Z 7%,,— = H 1 - gl deg )

e={ ¥=0

S
2} ¥ %

<
R
N’
-~
=
N4
N
-_ O

s %

(1).

-

Take [],. of both sides, where & runs over all monic irreducible polynomials in 2. As for the
left hand side, it follows from the commutativity that

(IT. of lefi-hand side) = HZ m(l":'(f:r N _ Z m((;’(d%f))

T e=l £: monic

where f runs over all monic polvnomials in k. As for the right hand side, we have. for
0<i<t-1.

1 x m ] -1
H (] (1("')""~ ) HZ; q(-r—:)d:;,r =zf: g—Ndee ] = Zﬂ q(:l-.')m = (l - F) :
T w €@ = m=

Thus, we obtain a rational-function expressiou of the zeta function

ind (7(f)) _ 1 Ly
ZW - H (1 - q""") .

/! i=1

9
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8

Conclusion and future work

o We have found various useful properties on codes over a class of Euclidean domains:

— Generator matrices
— Identical equations of generator matrices

— Application of Hecke rings.

e Futurc work will focus on developing the enumeration of efficient codes.

e Another area of rescarch will involve establishing the theory of parity-check matrices of

these codes.
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